skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The assembly and importance of a novel ecosystem: The ant community of coffee farms in Puerto Rico
Abstract Agricultural ecosystems are by their very nature novel and by definition the more general biodiversity associated with them must likewise constitute a novel community. Here, we examine the community of arboreally foraging ants in the coffee agroecosystem of Puerto Rico. We surveyed 20 coffee plants in 25 farms three times in a period of one year. We also conducted a more spatially explicit sampling in two of the farms and conducted a species interaction study between the two most abundant species,Wasmannia auropunctataandSolenopsis invicta,in the laboratory. We find that the majority of the most common species are well‐known invasive ants and that there is a highly variable pattern of dominance that varies considerably over the main coffee producing region of Puerto Rico, suggesting an unusual modality of community structure. The distribution pattern of the two most common species,W. auropunctataandS. invicta, suggests strong competitive exclusion. However, they also have opposite relationships with the percent of shade cover, withW. auropunctatashowing a positive relationship with shade, whileS. invictahas a negative relationship. The spatial distribution of these two dominant species in the two more intensively studied farms suggests that young colonies ofS. invictacan displaceW. auropunctata. Laboratory experiments confirm this. In addition to the elaboration of the nature and extent of this novel ant community, we speculate on the possibilities of its active inclusion as part of a biological control system dealing with several coffee pests, including one of the ants itself,W. auropunctata.  more » « less
Award ID(s):
1853261
PAR ID:
10507905
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology and Evolution
Volume:
10
Issue:
23
ISSN:
2045-7758
Page Range / eLocation ID:
12650 to 12662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atkinson, Phil (Ed.)
    Shade coffee is a well-studied cultivation strategy that creates habitat for tropical birds while also maintaining agricultural yield. Although there is a general consensus that shade coffee is more “bird-friendly” than a sun coffee monoculture, little work has investigated the effects of specific shade tree species on insectivorous bird diversity. This study involved avian foraging observations, mist netting data, temperature loggers, and arthropod sampling to investigate bottom-up effects of two shade tree taxa - native Cordia sp. and introduced Grevillea robusta - on insectivorous bird communities in central Kenya. Results indicate that foliage-dwelling arthropod abundance, and the richness and overall abundance of foraging birds were all higher on Cordia than on Grevillea. Furthermore, multivariate analyses of the bird community indicate a significant difference in community composition between the canopies of the two tree species, though the communities of birds using the coffee understory under these shade trees were similar. In addition, both shade trees buffered temperatures in coffee, and temperatures under Cordia were marginally cooler than under Grevillea. These results suggest that native Cordia trees on East African shade coffee farms may be better at mitigating habitat loss and attracting insectivorous birds that could promote ecosystem services. Identifying differences in prey abundance and preferences in bird foraging behavior not only fills basic gaps in our understanding of the ecology of East African coffee farms, it also aids in developing region-specific information to optimize functional diversity, ecosystem services, and the conservation of birds in agricultural landscapes. 
    more » « less
  2. Abstract AimCoffee is an important export for many developing countries, with a global annual trade value of $100 billion, but it is threatened by a warming climate. Shade trees may mitigate the effects of climate change through temperature regulation that can aid in coffee growth, slow pest reproduction, and sustain avian insectivore diversity. The impact of shade on bird diversity and microclimate on coffee farms has been studied extensively in the Neotropics, but there is a dearth of research in the Paleotropics. LocationEast Africa. MethodsWe created current and future regional Maxent models for avian insectivores in East Africa using Worldclim temperature data and observations from the Global Biodiversity Information Database. We then adjusted current and future bioclimatic layers based on mean differences in temperature between shade and sun coffee farms and projected the models using these adjusted layers to predict the impact of shade tree removal on climatic suitability for avian insectivores. ResultsExisting Worldclim temperature layers more closely matched temperatures under shade trees than temperatures in the open. Removal of shade trees, through warmer temperatures alone, would result in reduction of avian insectivore species by over 25%, a loss equivalent to 50 years of climate change under the most optimistic emissions scenario. Under the most extreme climate scenario and removal of shade trees, insectivore richness is projected to decline from a mean of 38 to fewer than 8 avian insectivore species. Main conclusionsWe found that shade trees on coffee farms already provide important cooler microclimates for avian insectivores. Future temperatures will become a regionally limiting factor for bird distribution in East Africa, which could negatively impact control of coffee pests, but the effect of climate change can be potentially mediated through planting and maintaining shade trees on coffee farms. 
    more » « less
  3. Abstract Severe droughts have led to lower plant growth and high mortality in many ecosystems worldwide, including tropical forests. Drought vulnerability differs among species, but there is limited consensus on the nature and degree of this variation in tropical forest communities. Understanding species‐level vulnerability to drought requires examination of hydraulic traits since these reflect the different strategies species employ for surviving drought.Here, we examined hydraulic traits and growth reductions during a severe drought for 12 common woody species in a wet tropical forest community in Puerto Rico to ask: Q1. To what extent can hydraulic traits predict growth declines during drought? We expected that species with more hydraulically vulnerable xylem and narrower safety margins (SMP50) would grow less during drought. Q2. How does species successional association relate to the levels of vulnerability to drought and hydraulic strategies? We predicted that early‐ and mid‐successional species would exhibit more acquisitive strategies, making them more susceptible to drought than shade‐tolerant species. Q3. What are the different hydraulic strategies employed by species and are there trade‐offs between drought avoidance and drought tolerance? We anticipated that species with greater water storage capacity would have leaves that lose turgor at higher xylem water potential and be less resistant to embolism forming in their xylem (P50).We found a large range of variation in hydraulic traits across species; however, they did not closely capture the magnitude of growth declines during drought. Among larger trees (≥10 cm diameter at breast height—DBH), some tree species with high xylem embolism vulnerability (P50) and risk of hydraulic failure (SMP50) experienced substantial growth declines during drought, but this pattern was not consistent across species. We found a trade‐off among species between drought avoidance (capacitance) and drought tolerating (P50) in this tropical forest community. Hydraulic strategies did not align with successional associations. Instead, some of the more drought‐vulnerable species were shade‐tolerant dominants in the community, suggesting that a drying climate could lead to shifts in long‐term forest composition and function in Puerto Rico and the Caribbean. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Abstract Dams are often removed from rivers to restore habitat connectivity for biota such as fish. Removal of inland dams is well studied in temperate mainland rivers but this approach has been little studied in fish assemblages in islands, tropic systems, or for dams near the mouth of the river. In Puerto Rico, one of the most intensively dammed territories in the world, all native river fishes migrate between fresh water and the sea, and previous work shows that these movements are impeded or blocked by dams.Fish assemblages were compared before and after removal of the Cambalache dam, a porous, low‐head structure near the mouth of the Río Grande de Arecibo, as well as in two other rivers in western Puerto Rico, one with a similarly sized and positioned dam, and one reference river without artificial barriers. Fish were sampled using backpack electrofishing on 39 occasions during 2017–2019, including seven samples collected after removal of the Cambalache dam, at four to six sites per river.Fish assemblages upstream from dams were poorer in species, and species richness showed a marginal tendency (p = 0.0515) to increase upstream of the Cambalache dam 3 months after its removal. The two small lowland dams studied herein limited the upstream extent of marine species, which recolonised upstream sites of the Río Grande de Arecibo after removal of the Cambalache dam. An estimate of relative density (catch per unit effort) of common native freshwater species was higher above these two dams, and decreased at upstream sites after removal of the Cambalache dam. The estimated relative density of a native freshwater species that is of conservation concern, the American eel (Anguilla rostrata), was reduced above dams, and increased upstream of the former Cambalache dam after its removal.In extensive surveys conducted previously in Puerto Rico, sampling was concentrated higher in the catchment, and native fishes were more common and abundant below than above dams. The present work was conducted near the river mouth, and opposite results were observed. These contrasting results suggest that the effects of dams (or dam removal) on fish assemblages vary along the river gradient, although data from other systems are needed to confirm this.The present results suggest low‐head dam removal to be a viable method of restoring connectivity in fish assemblages in lower reaches of rivers in Puerto Rico and, potentially, other tropical islands. Removal of dams near the mouth of the river appears to be of particular benefit to marine fish species that use lower river reaches. 
    more » « less
  5. Abstract Natural pest control is an alternative to pesticide use in agriculture, and may help to curb insect declines and promote crop production. Nonconsumptive interactions in natural pest control that historically have received far less attention than consumptive interactions, may have distinct impacts on pest damage suppression and may also mediate positive multipredator interactions. Additionally, when nonconsumptive effects are driven by natural enemy aggression, variation in alternative resources for enemies may impact the strength of pest control. Here we study control of the coffee berry borer (CBB),Hypothenemus hampei, by a keystone arboreal ant species,Azteca sericeasur, which exhibits a nonconsumptive effect on CBB by throwing them off coffee plants. We conducted two experiments to investigate: (1) if the strength of this behavior is driven by spatial or temporal variability in scale insect density (an alternative resource thatAztecatends for honeydew), (2) if this behavior mediates positive interactions betweenAztecaand other ground‐foraging ants, and (3) the effect this behavior has on the overall suppression of CBB damage in multipredator scenarios. Our behavioral experiment showed that nearly all interactions betweenAztecaand CBB are nonconsumptive and that this behavior occurs more frequently in the dry season and with higher densities of scale insects on coffee branches. Our multipredator experiment revealed that borers thrown off coffee plants byAztecacan survive and potentially damage other nearby plants but may be suppressed by ground‐foraging ants. Although we found no non‐additive effects betweenAztecaand ground‐foraging ants on overall CBB damage, together, both species resulted in the lowest level of plant damage with the subsequent reduction in “spillover” damage caused by thrown CBB, indicating spatial complementarity between predators. These results present a unique case of natural pest control, in which damage suppression is driven almost exclusively by nonconsumptive natural enemy aggression, as opposed to consumption or prey behavioral changes. Furthermore, our results demonstrate the variability that may occur in nonconsumptive pest control interactions when natural enemy aggressive behavior is impacted by alternative resources, and also show how these nonconsumptive effects can mediate positive interactions between natural enemies to enhance overall crop damage reduction. 
    more » « less