skip to main content


Title: Shade trees preserve avian insectivore biodiversity on coffee farms in a warming climate
Abstract Aim

Coffee is an important export for many developing countries, with a global annual trade value of $100 billion, but it is threatened by a warming climate. Shade trees may mitigate the effects of climate change through temperature regulation that can aid in coffee growth, slow pest reproduction, and sustain avian insectivore diversity. The impact of shade on bird diversity and microclimate on coffee farms has been studied extensively in the Neotropics, but there is a dearth of research in the Paleotropics.

Location

East Africa.

Methods

We created current and future regional Maxent models for avian insectivores in East Africa using Worldclim temperature data and observations from the Global Biodiversity Information Database. We then adjusted current and future bioclimatic layers based on mean differences in temperature between shade and sun coffee farms and projected the models using these adjusted layers to predict the impact of shade tree removal on climatic suitability for avian insectivores.

Results

Existing Worldclim temperature layers more closely matched temperatures under shade trees than temperatures in the open. Removal of shade trees, through warmer temperatures alone, would result in reduction of avian insectivore species by over 25%, a loss equivalent to 50 years of climate change under the most optimistic emissions scenario. Under the most extreme climate scenario and removal of shade trees, insectivore richness is projected to decline from a mean of 38 to fewer than 8 avian insectivore species.

Main conclusions

We found that shade trees on coffee farms already provide important cooler microclimates for avian insectivores. Future temperatures will become a regionally limiting factor for bird distribution in East Africa, which could negatively impact control of coffee pests, but the effect of climate change can be potentially mediated through planting and maintaining shade trees on coffee farms.

 
more » « less
Award ID(s):
1657973
NSF-PAR ID:
10455293
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
10
Issue:
23
ISSN:
2045-7758
Page Range / eLocation ID:
p. 12960-12972
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atkinson, Phil (Ed.)
    Shade coffee is a well-studied cultivation strategy that creates habitat for tropical birds while also maintaining agricultural yield. Although there is a general consensus that shade coffee is more “bird-friendly” than a sun coffee monoculture, little work has investigated the effects of specific shade tree species on insectivorous bird diversity. This study involved avian foraging observations, mist netting data, temperature loggers, and arthropod sampling to investigate bottom-up effects of two shade tree taxa - native Cordia sp. and introduced Grevillea robusta - on insectivorous bird communities in central Kenya. Results indicate that foliage-dwelling arthropod abundance, and the richness and overall abundance of foraging birds were all higher on Cordia than on Grevillea. Furthermore, multivariate analyses of the bird community indicate a significant difference in community composition between the canopies of the two tree species, though the communities of birds using the coffee understory under these shade trees were similar. In addition, both shade trees buffered temperatures in coffee, and temperatures under Cordia were marginally cooler than under Grevillea. These results suggest that native Cordia trees on East African shade coffee farms may be better at mitigating habitat loss and attracting insectivorous birds that could promote ecosystem services. Identifying differences in prey abundance and preferences in bird foraging behavior not only fills basic gaps in our understanding of the ecology of East African coffee farms, it also aids in developing region-specific information to optimize functional diversity, ecosystem services, and the conservation of birds in agricultural landscapes. 
    more » « less
  2. Abstract

    Forests are being converted to agriculture throughout the Afrotropics, driving declines in sensitive rainforest taxa such as understorey birds. The ongoing expansion of cocoa agriculture, a common small‐scale farming commodity, has contributed to the loss of 80% rainforest cover in some African countries. African cocoa farms may provide habitat for biodiversity, yet little is known about their suitability for vertebrate fauna, or the effect of farm management on animal communities.

    Here, we report the first in‐depth investigation into avian diversity and community composition in African cocoa, by assembling a dataset of 9,566 individual birds caught across 83 sites over 30 years in Southern Cameroon. We compared bird diversity in mature forest and cocoa using measures of alpha, beta and gamma diversity, and we investigated the effect of cocoa farm shade and forest cover on bird communities.

    Gamma diversity was higher in cocoa than forest, though alpha diversity was similar, indicating a higher dissimilarity (beta diversity) between cocoa farms. Cocoa farms differed from forest in community composition, with a distinctive decrease in relative abundance of insectivores, forest specialists and ant‐followers and an increase in frugivores.

    Within cocoa farms, we found that farms with high shade cover in forested landscapes resulted in higher relative abundance and richness of sensitive forest species; shady farms contained up to five times the proportion of forest specialists than sunny farms.

    Synthesis and applications. Sunny African cocoa farms were less able to support sensitive bird guilds compared with shaded farms in forested landscapes. Our findings support the notion that certain ecological and dietary guilds, such as ant‐followers and forest specialists are disproportionately affected by land‐use change. In light of the current push to increase cocoa production in sub‐Saharan Africa, our results provide policymakers opportunities for more wildlife‐friendly cocoa schemes that maximize avian diversity.

     
    more » « less
  3. In response to a warming planet with earlier springs, migratory animals are adjusting the timing of essential life stages. Although these adjustments may be essential for keeping pace with resource phenology, they may prove insufficient, as evidenced by population declines in many species. However, even when species can match the tempo of climate change, other consequences may emerge when exposed to novel conditions earlier in the year. Here, using three long-term datasets on bird reproduction, daily insect availability, and weather, we investigated the complex mechanisms affecting reproductive success in an aerial insectivore, the tree swallow (Tachycineta bicolor). By examining breeding records over nearly half a century, we discovered that tree swallows have continuously advanced their egg laying by ∼3 d per decade. However, earlier-hatching offspring are now exposed to inclement weather events twice as often as they were in the 1970s. Our long-term daily insect biomass dataset shows no long-term trends over 25 y but precipitous drops in flying insect numbers on days with low ambient temperatures. Insect availability has a considerable impact on chick survival: Even a single inclement weather event can reduce offspring survival by >50%. Our results highlight the multifaceted threats that climate change poses on migrating species. The decoupling between cold snap occurrence and generally warming spring temperatures can affect reproductive success and threaten long-term persistence of populations. Understanding the exact mechanisms that endanger aerial insectivores is especially timely because this guild is experiencing the steepest and most widespread declines across North America and Europe.

     
    more » « less
  4. Urban trees play an important role in helping cities adapt to climate change, but also are vulnerable to changes in climate themselves. We developed an approach for assessing vulnerability of urban tree species and cultivars commonly planted in cities in the United States Upper Midwest to current and projected climate change through the end of the 21st century. One hundred seventy-eight tree species were evaluated for their adaptive capacity to a suite of current and future-projected climate and urban stressors using a weighted scoring system based on an extensive literature review. These scores were then evaluated and adjusted by leading experts in arboriculture in the region. Each species or cultivar’s USDA Hardiness Zone and American Horticultural Society Heat Zone tolerance was compared to current and future heat and hardiness zones for 14 municipalities across Michigan, Wisconsin, and Minnesota using statistically downscaled climate data. Species adaptive capacity and zone tolerance was combined to assign each species one of five vulnerability categories for each location. We determined the number of species and trees in each category based on the most recent municipal street tree data for each location. Under a scenario of less climate change (RCP 4.5), fewer than 2% of trees in each municipality were considered highly vulnerable across all 14 municipalities. Under a scenario of greater change (RCP 8.5), upward of 25% of trees were considered highly vulnerable in some locations. However, the number of vulnerable trees varied greatly by location, primarily because of differences in projected summer high temperatures rather than differences in species composition. Urban foresters can use this information as a complement to other more traditional considerations used when selecting trees for planting. 
    more » « less
  5. Aim

    The climate tolerances of many species are broader than those estimated from current native ranges. Indeed, the niches of some Afromontane trees are up to 50% larger after incorporation of fossil data. This expansion could reduce estimates of species' future range loss owing to climate change but also implies strong non‐climatic limitations on species' current ranges. One such limitation is land use, which fossil data suggest influences Afromontane tree distribution, preventing these trees from occupying warmer conditions than they do currently. We aimed to assess the degree to which the broader climatic tolerances revealed by fossil data buffer projected range loss from climate and land use for Afromontane trees.

    Location

    Africa.

    Time period

    Last 21,000 years.

    Major taxa studied

    Afromontane trees.

    Methods

    We used species distribution models informed by both current and fossil distributions to project future ranges under climate and land‐use projections.

    Results

    We found that projected range reductions are only slightly ameliorated by incorporation of fossil distributions, and these improvements diminish further under severe land‐use or climate change scenarios. Taxa that are less impacted by climate are more impacted by intense land use. Depending on the severity of climate and land use, the geographical extent of Afromontane tree species' ranges will contract by 40–85%, and the trees will be completely lost from large portions of Africa. We projected that the surviving species' ranges will become increasingly fragmented.

    Main conclusions

    Maintaining Afromontane ecosystems will require mitigation of both climate and land‐use change and protection of areas to optimize connectivity. Our findings caution that species with climate tolerances broader than their current range might not necessarily fare better under strong changes in climate or land use.

     
    more » « less