Structural characterization of polymer materials is a major step in the process of creating materials' design-structural-property relationships. With growing interests in artificial intelligence (AI)-driven materials design and high-throughput synthesis and measurements, there is now a critical need for development of complementary data-driven approaches (e.g., machine learning models and workflows) to enable fast and automated interpretation of the characterization results. This review sets out with a description of the needs for machine learning specifically in the context of three commonly used structural characterization techniques for polymer materials: microscopy, scattering, and spectroscopy. Subsequently, a review of notable work done on development and application of machine learning models / workflows for these three types of measurements is provided. Definitions are provided for common machine learning terms to help readers who may be less familiar with the terminologies used in the context of machine learning. Finally, a perspective on the current challenges and potential opportunities to successfully integrate such data-driven methods in parallel/sequentially with the measurements is provided. The need for innovative interdisciplinary training programs for researchers regardless of their career path/employment in academia, national laboratories, or research and development in industry is highlighted as a strategy to overcome the challenge associated with the sharing and curation of data and unifying metadata.
more »
« less
A snapshot review on soft materials assembly design utilizing machine learning methods
Since the surge of data in materials-science research and the advancement in machine learning methods, an increasing number of researchers are introducing machine learning techniques into the next generation of materials discovery, ranging from neural-network learned potentials to automated characterization techniques for experimental images. In this snapshot review, we first summarize the landscape of techniques for soft materials assembly design that do not employ machine learning or artificial intelligence and then discuss specific machine learning and artificial-intelligence-based methods that enhance the design pipeline, such as high-throughput crystal-structure characterization and the inverse design of building blocks for materials assembly and properties. Additionally, we survey the landscape of current developments of scientific software, especially in the context of their compatibility with traditional molecular-dynamics engines such as LAMMPS and HOOMD-blue.
more »
« less
- Award ID(s):
- 2144094
- PAR ID:
- 10508051
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- MRS Advances
- ISSN:
- 2059-8521
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Decarbonizing concrete production is a critical step toward achieving carbon neutrality by 2050. This paper highlights the advancements in artificial intelligence-assisted design of low-carbon cost-effective concrete, focusing on integrating machine learning-based property prediction with multi-objective optimization. Data collection and processing techniques, such as automatic data extraction, artificial data generation, and anomaly detection, are first discussed to address the importance of dataset quality. Strategies that capture physicochemical information of ingredients, including by-product supplementary cementitious materials and recycled aggregates, are then examined to enhance model generalizability. Various machine learning models—from individual regression approaches to heterogeneous ensemble methods—are compared for their predictive accuracy and robustness. Methods for hyperparameter tuning, model evaluation, and interpretation to ensure reliable and interpretable predictions are reviewed. Design optimization approaches are then highlighted, ranging from grid/random searches to more sophisticated gradient-based and metaheuristic algorithms, aimed at minimizing carbon footprint, embodied energy, and cost. Future research avenues encompass (1) application-specific design frameworks that integrate critical objectives—mechanical performance, durability, fresh-state behavior, and time-dependent properties such as creep and shrinkage—tailored to specific structural and environmental requirements; (2) holistic design optimization that simultaneously refines mixture design and structural parameters; and (3) probabilistic approaches to systematically manage uncertainties in materials, structural performance, and loading conditions systematically.more » « less
-
rowdsourcing has been used to produce impactful and large-scale datasets for Machine Learning and Artificial Intelligence (AI), such as ImageNET, SuperGLUE, etc. Since the rise of crowdsourcing in early 2000s, the AI community has been studying its computational, system design, and data-centric aspects at various angles. We welcome the studies on developing and enhancing of crowdworker-centric tools, that offer task matching, requester assessment, instruction validation, among other topics. We are also interested in exploring methods that leverage the integration of crowdworkers to improve the recognition and performance of the machine learning models. Thus, we invite studies that focus on shipping active learning techniques, methods for joint learning from noisy data and from crowds, novel approaches for crowd-computer interaction, repetitive task automation, and role separation between humans and machines. Moreover, we invite works on designing and applying such techniques in various domains, including e-commerce and medicine.more » « less
-
Nanomanufacturing and digital manufacturing (DM) are defining the forefront of the fourth industrial revolution—Industry 4.0—as enabling technologies for the processing of materials spanning several length scales. This review delineates the evolution of nanomaterials and nanomanufacturing in the digital age for applications in medicine, robotics, sensory technology, semiconductors, and consumer electronics. The incorporation of artificial intelligence (AI) tools to explore nanomaterial synthesis, optimize nanomanufacturing processes, and aid high-fidelity nanoscale characterization is discussed. This paper elaborates on different machine-learning and deep-learning algorithms for analyzing nanoscale images, designing nanomaterials, and nano quality assurance. The challenges associated with the application of machine- and deep-learning models to achieve robust and accurate predictions are outlined. The prospects of incorporating sophisticated AI algorithms such as reinforced learning, explainable artificial intelligence (XAI), big data analytics for material synthesis, manufacturing process innovation, and nanosystem integration are discussed.more » « less
-
Metal additive manufacturing (AM) holds immense potential for developing advanced structural alloys. However, the complex, heterogeneous nature of AM-produced materials presents significant challenges to traditional material characterization and optimization methods. This review explores the integration of artificial intelligence (AI) and machine learning (ML) with high-throughput material characterization protocols to rapidly establish the process–structure–property (PSP) relationships critically needed to dramatically accelerate the development of metal AM processes. Combinatorial high-throughput evaluations, including rapid material synthesis and nonstandard high-throughput testing protocols, such as spherical indentation and small punch tests, are discussed for their capability to rapidly assess mechanical properties and establish PSP linkages. Furthermore, the review examines the role of AI and ML in optimizing AM processes, particularly through Bayesian optimization, which offers new avenues for efficient exploration of high-dimensional design spaces. The review envisions a future where AI- and ML-driven, autonomous AM development cycles significantly enhance material and process optimization.more » « less
An official website of the United States government

