skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Human Factors Approach to Improve Layout Design for A Virtual Reality-based Training Platform
In manufacturing industries, equipment arrangement, and layout design are critical factors that directly influence productivity, workplace safety, and workers’ performance. Link analysis, as a human factors approach, has been widely used in industries for many years to improve layout design and machinery arrangement. This approach considers humans' physical and cognitive capabilities and movement limitations to find an optimal design. Virtual reality significantly impacts our society from product design to worker training. Hence, effective virtual training platforms require the same attention to layout design as manufacturing work settings which offer efficient testing of multiple layouts. This research focuses on developing a virtual 3D printing laboratory for workforce training and has used a link analysis and user perception study to improve the layout of the virtual workplace. The research demonstrates the importance of layout design in virtual training platforms and the potential benefits of utilizing link analysis in optimizing layout design.  more » « less
Award ID(s):
2202598
PAR ID:
10508120
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Sage Journals
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
67
Issue:
1
ISSN:
1071-1813
Page Range / eLocation ID:
1439 to 1444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study investigates how individual predispositions toward Virtual Reality (VR) affect user experiences in collaborative VR environments, particularly in workplace settings. By adapting the Video Game Pursuit Scale to measure VR predisposition, we aim to establish the reliability and validity of this adapted measure in assessing how personal characteristics influence engagement and interaction in VR. Two studies, the first correlational and the second quasi-experimental, were conducted to examine the impact of environmental features, specifically the differences between static and mobile VR platforms, on participants’ perceptions of time, presence, and task motivation. The findings indicate that individual differences in VR predisposition significantly influence user experiences in virtual environments with important implications for enhancing VR applications in training and team collaboration. This research contributes to the understanding of human–computer interaction in VR and offers valuable insights for organizations aiming to implement VR technologies effectively. The results highlight the importance of considering psychological factors in the design and deployment of VR systems, paving the way for future research in this rapidly evolving field. 
    more » « less
  2. Virtual reality systems are making significant headway in the construction industry for design, training, planning, and management applications. With research continuing to show the virtues of adopting virtual reality in blue-collar occupational environments, the industry is making rapid and substantial investments to facilitate institutional innovation that supports adoption. Despite a push from both the research and professional community, the widespread adoption of virtual reality remains hindered because details on practical application remains unclear. This study used a social constructionist approach to capture the perspectives of industry professionals on the challenges and opportunities associated with use of virtual reality for construction safety applications. The interviews with professionals revealed that the application of virtual reality in the workplace is currently in its infancy stage and lacks standardization primarily due to scalability and quality concerns. Additionally, the cost associated with large-scale adoption also remains prohibitive to date. The experiential learnings of professionals are used in this paper to determine where future research and practice efforts need to focus to pave the way for future of virtual reality within the construction industry. 
    more » « less
  3. The rapid evolution of modern manufacturing systems is driven by the integration of emerging metaverse technologies such as artificial intelligence (AI), digital twin (DT), and different forms of extended reality (XR) like virtual reality (VR), augmented reality (AR), and mixed reality (MR). These advances confront manufacturing workers with complex and evolving environments that demand digital literacy for problem solving in the future workplace. However, manufacturing industry faces a critical shortage of skilled workforce with digital literacy in the world. Further, global pandemic has significantly changed how people work and collaborate digitally and remotely. There is an urgent need to rethink digital platformization and leverage emerging technologies to propel industrial evolution toward human-centered manufacturing metaverse (MfgVerse). This paper presents a forward-looking perspective on the development of MfgVerse, highlighting current efforts in learning factory, cognitive digital twinning, and the new sharing economy of manufacturing-as-a-service (MaaS). MfgVerse is converging into multiplex networks, including a social network of human stakeholders, an interconnected network of manufacturing things or agents (e.g., machines, robots, facilities, material handling systems), a network of digital twins of physical things, as well as auxiliary networks of sales, supply chain, logistics, and remanufacturing systems. We also showcase the design and development of a virtual learning factory for workforce training. Finally, future directions, challenges, and opportunities are discussed for human-centered manufacturing metaverse. We hope this work helps stimulate more comprehensive studies and in-depth research efforts to advance MfgVerse technologies. 
    more » « less
  4. Multiple-view visualization (MV) has been used for visual analytics in various fields (e.g., bioinformatics, cybersecurity, and intelligence analysis). Because each view encodes data from a particular per-spective, analysts often use a set of views laid out in 2D space to link and synthesize information. The difficulty of this process is impacted by the spatial organization of these views. For instance, connecting information from views far from each other can be more challenging than neighboring ones. However, most visual analysis tools currently either fix the positions of the views or completely delegate this organization of views to users (who must manually drag and move views). This either limits user involvement in managing the layout of MV or is overly flexible without much guidance. Then, a key design challenge in MV layout is determining the factors in a spatial organization that impact understanding. To address this, we review a set of MV-based systems and identify considerations for MV layout rooted in two key concerns: perception, which considers how users perceive view relationships, and content, which considers the relationships in the data. We show how these allow us to study and analyze the design of MV layout systematically. 
    more » « less
  5. Because of increased geometric freedom at a widening range of length scales and access to a growing material space, additive manufacturing has spurred renewed interest in topology optimization of parts with spatially varying material properties and structural hierarchy. Simultaneously, a surge of micro/nanoarchitected materials have been demonstrated. Nevertheless, multiscale design and micro/nanoscale additive manufacturing have yet to be sufficiently integrated to achieve free-form, multiscale, biomimetic structures. We unify design and manufacturing of spatially varying, hierarchical structures through a multimicrostructure topology optimization formulation with continuous multimicrostructure embedding. The approach leads to an optimized layout of multiple microstructural materials within an optimized macrostructure geometry, manufactured with continuously graded interfaces. To make the process modular and controllable and to avoid prohibitively expensive surface representations, we embed the microstructures directly into the 3D printer slices. The ideas provide a critical, interdisciplinary link at the convergence of material and structure in optimal design and manufacturing. 
    more » « less