The subregular approach has revealed that the phonological surface patterns found in natural language are much simpler than previously assumed. Most patterns belong to the subregular class of tier-based strictly local languages (TSL), which characterizes them as the combination of a strictly local dependency with a tier-projection mechanism that masks out irrelevant segments. Some non-TSL patterns have been pointed out in the literature, though. We show that these outliers can be captured by rendering the tier projection mechanism sensitive to the surrounding structure. We focus on a specific instance of these structure-sensitive TSL languages: input-local TSL (ITSL), in which the tier projection may distinguish between identical segments that occur in different local contexts in the input string. This generalization of TSL establishes a tight link between tier-based language classes and ISL transductions, and is motivated by several natural language phenomena.
more »
« less
Weak determinism and the computational consequences of interaction
Recent work has claimed that (non-tonal) phonological patterns are subregular (Heinz 2011a,b, 2018; Heinz and Idsardi 2013), occupying a delimited proper subregion of the regular functions—the weakly deterministic (WD) functions (Heinz and Lai 2013; Jardine 2016). Whether or not it is correct (McCollum et al. 2020a), this claim can only be properly assessed given a complete and accurate definition of WD functions. We propose such a definition in this article, patching unintended holes in Heinz and Lai’s (2013) original definition that we argue have led to the incorrect classification of some phonological patterns as WD. We start from the observation that WD patterns share a property that we call unbounded semiambience, modeled after the analogous observation by Jardine (2016) about non-deterministic (ND) patterns and their unbounded circumambience. Both ND and WD functions can be broken down into compositions of deterministic (subsequential) functions (Elgot and Mezei 1965; Heinz and Lai 2013) that read an input string from opposite directions; we show that WD functions are those for which these deterministic composands do not interact in a way that is familiar from the theoretical phonology literature. To underscore how this concept of interaction neatly separates the WD class of functions from the strictly more expressive ND class, we provide analyses of the vowel harmony patterns of two Eastern Nilotic languages, Maasai and Turkana, using bimachines, an automaton type that represents unbounded bidirectional dependencies explicitly. These analyses make clear that there is interaction between deterministic composands when (and only when) the output of a given input element of a string is simultaneously dependent on information from both the left and the right: ND functions are those that involve interaction, while WD functions are those that do not.
more »
« less
- Award ID(s):
- 2021149
- PAR ID:
- 10508215
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Natural Language & Linguistic Theory
- ISSN:
- 0167-806X
- Subject(s) / Keyword(s):
- Phonology Computational phonology Subregular hierarchy Interaction
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human speech perception involves transforming a countinuous acoustic signal into discrete linguistically meaningful units (phonemes) while simultaneously causing a listener to activate words that are similar to the spoken utterance and to each other. The Neighborhood Activation Model posits that phonological neighbors (two forms [words] that differ by one phoneme) compete significantly for recognition as a spoken word is heard. This definition of phonological similarity can be extended to an entire corpus of forms to produce a phonological neighbor network (PNN). We study PNNs for five languages: English, Spanish, French, Dutch, and German. Consistent with previous work, we find that the PNNs share a consistent set of topological features. Using an approach that generates random lexicons with increasing levels of phonological realism, we show that even random forms with minimal relationship to any real language, combined with only the empirical distribution of language-specific phonological form lengths, are sufficient to produce the topological properties observed in the real language PNNs. The resulting pseudo-PNNs are insensitive to the level of lingustic realism in the random lexicons but quite sensitive to the shape of the form length distribution. We therefore conclude that “universal” features seen across multiple languages are really string universals, not language universals, and arise primarily due to limitations in the kinds of networks generated by the one-step neighbor definition. Taken together, our results indicate that caution is warranted when linking the dynamics of human spoken word recognition to the topological properties of PNNs, and that the investigation of alternative similarity metrics for phonological forms should be a priority.more » « less
-
The Time-Invariant String Kernel (TISK) model of spoken word recognition (Hanngan et al., 2013) is an interactive activation model like TRACE (McClelland & Elman, 1986). However, it uses orders of magnitude fewer nodes and connections because it replaces TRACE's time-specific duplicates of phoneme and word nodes with time-invariant nodes based on a string kernel representation (essentially a phoneme-by-phoneme matrix, where a word is encoded as by all ordered open diphones it contains; e.g., cat has /kæ/, /æt/, and /kt/). Hannagan et al. (2013) showed that TISK behaves similarly to TRACE in the time course of phonological competition and even word-specific recognition times. However, the original implementation did not include feedback from words to diphone nodes, precluding simulation of top-down effects. Here, we demonstrate that TISK can be easily adapted to lexical feedback, affording simulation of top-down effects as well as allowing the model to demonstrate graceful degradation given noisy inputs.more » « less
-
We investigate stripe patterns formation far from threshold using a combination of topological, analytic, and numerical methods. We first give a definition of the mathematical structure of 'multi-valued' phase functions that are needed for describing layered structures or stripe patterns containing defects. This definition yields insight into the appropriate 'gauge symmetries' of patterns, and leads to the formulation of variational problems, in the class of special functions with bounded variation, to model patterns with defects. We then discuss approaches to discretize and numerically solve these variational problems. These energy minimizing solutions support defects having the same character as seen in experiments.more » « less
-
Abstract Satellite observations have shown widespread greening during the last few decades over the northern permafrost region, but the impact of vegetation greening on permafrost thermal dynamics remains poorly understood, hindering the understanding of permafrost‐vegetation‐climate feedbacks. Summer surface offset (SSO), defined as the difference between surface soil temperature and near‐surface air temperature in summer (June‐August), is often predicted as a function of surface thermal characteristics for permafrost modeling. Here we examined the impact of leaf area index (LAI), detected by satellite as a proxy to permafrost vegetation dynamics, on SSO variations from 2003 to 2021 across the northern permafrost region. We observed latitude‐ and biome‐dependent patterns of SSO changes, with a pronounced increase in Siberian shrublands and a decrease in Tibetan grasslands. Based on partial correlation and sensitivity analyses, we found a strong LAI signal (∼30% of climatic signal) on SSO with varying elevation‐ and canopy height‐dependent patterns. Positive correlations or sensitivities, that is, increases in LAI lead to higher SSO, were distributed in relatively cold and wet areas. Biophysical effects of permafrost greening on surface albedo, evapotranspiration, and soil moisture (SM) could link the connection between LAI and SSO. Increased LAI substantially reduced surface albedo and enhanced evapotranspiration, influenced energy redistribution, and further controlled interannual variability of SSO. We also found contrasting effects of LAI on surface SM, consequently leading to divergent impacts on SSO. The results offer a fresh perspective on how greening affects the thermal balance and dynamics of permafrost, which is enlightening for improved permafrost projections.more » « less
An official website of the United States government

