Recent efforts to numerically simulate compact objects in alternative theories of gravity have largely focused on the time-evolution equations. Another critical aspect is the construction of constraint-satisfying initial data with precise control over the properties of the systems under consideration. Here, we augment the extended conformal thin sandwich framework to construct quasistationary initial data for black hole systems in scalar Gauss-Bonnet theory and numerically implement it in the open-source p code. Despite the resulting elliptic system being singular at black hole horizons, we demonstrate how to construct numerical solutions that extend smoothly across the horizon. We obtain quasistationary scalar hair configurations in the test-field limit for black holes with linear/angular momentum as well as for black hole binaries. For isolated black holes, we explicitly show that the scalar profile obtained is stationary by evolving the system in time and compare against previous formulations of scalar Gauss-Bonnet initial data. In the case of the binary, we find that the scalar hair near the black holes can be markedly altered by the presence of the other black hole. The initial data constructed here enable targeted simulations in scalar Gauss-Bonnet simulations with reduced initial transients. Published by the American Physical Society2025
more »
« less
Spontaneously interacting qubits from Gauss-Bonnet
A<sc>bstract</sc> Building on previous constructions examining how a collection of small, locally interacting quantum systems might emerge via spontaneous symmetry breaking from a single-particle system of high dimension, we consider a larger family of geometric loss functionals and explicitly construct several classes of critical metrics which “know about qubits” (KAQ). The loss functional consists of the Ricci scalar with the addition of the Gauss-Bonnet term, which introduces an order parameter that allows for spontaneous symmetry breaking. The appeal of this method is two-fold: (i) the Ricci scalar has already been shown to have KAQ critical metrics and (ii) exact equations of motions are known for loss functionals with generic curvature terms up to two derivatives. We show that KAQ critical metrics, which are solutions to the equations of motion in the space of left-invariant metrics with fixed determinant, exist for loss functionals that include the Gauss-Bonnet term. We find that exploiting the subalgebra structure leads us to natural classes of KAQ metrics which contain the familiar distributions (GUE, GOE, GSE) for random Hamiltonians. We introduce tools for this analysis that will allow for straightfoward, although numerically intensive, extension to other loss functionals and higher-dimension systems.
more »
« less
- Award ID(s):
- 2310662
- PAR ID:
- 10508226
- Publisher / Repository:
- Journal of High Energy Physics
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 2
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
One of the most promising avenues to perform numerical evolutions in theories beyond general relativity is the approach, a proposal in which new “driver” equations are added to the evolution equations in a way that allows for stable numerical evolutions. In this direction, we extend the numerical relativity code p to evolve a “fixed” version of scalar Gauss-Bonnet theory in the decoupling limit, a phenomenologically interesting theory that allows for hairy black hole solutions in vacuum. We focus on isolated black hole systems both with and without linear and angular momentum, and propose a new driver equation to improve the recovery of such stationary solutions. We demonstrate the effectiveness of the latter by numerically evolving black holes that undergo spontaneous scalarization using different driver equations. Finally, we evaluate the accuracy of the obtained solutions by comparing with the original unaltered theory. Published by the American Physical Society2024more » « less
-
null (Ed.)A bstract As shown in [1], two copies of the large N Majorana SYK model can produce spontaneous breaking of a Z 2 symmetry when they are coupled by appropriate quartic terms. In this paper we similarly study two copies of the complex SYK model coupled by a quartic term preserving the U(1) × U(1) symmetry. We also present a tensor counterpart of this coupled model. When the coefficient α of the quartic term lies in a certain range, the coupled large N theory is nearly conformal. We calculate the scaling dimensions of fermion bilinear operators as functions of α . We show that the operator $$ {c}_{1i}^{\dagger }{c}_{2i} $$ c 1 i † c 2 i , which is charged under the axial U(1) symmetry, acquires a complex dimension outside of the line of fixed points. We derive the large N Dyson-Schwinger equations and show that, outside the fixed line, this U(1) symmetry is spontaneously broken at low temperatures because this operator acquires an expectation value. We support these findings by exact diagonalizations extrapolated to large N .more » « less
-
A<sc>bstract</sc> We study off-shelln-particle form factors of half-BPS operators built fromncomplex scalar fields at the two-loop order in the planar maximally supersymmetric Yang-Mills theory (sYM). These are known as minimal form factors. We construct their representation as a sum of independent scalar Feynman integrals relying on two complementary techniques. First, by going to the Coulomb branch of the theory by employing the spontaneous symmetry breaking which induces masses, but only for external particles while retaining masslessness for virtual states propagating in quantum loops. For a low number of external legs, this entails an uplift of massless integrands to their massive counterparts. Second, utilizing the$$ \mathcal{N} $$ = 1 superspace formulation of$$ \mathcal{N} $$ = 4 sYM and performing algebra of covariant derivatives off-shell. Both techniques provide identical results. These form factors are then studied in the near-mass-shell limit with the off-shellness regularizing emerging infrared divergences. We observe their exponentiation and confirm the octagon anomalous dimension, not the cusp, as the coefficient of the Sudakov double logarithmic behavior. By subtracting these singularities and defining a finite remainder, we verified that its symbol is identical to the one found a decade ago in the conformal case. Beyond-the-symbol contributions are different in the two cases, however.more » « less
-
Abstract The Theorem of Bonnet–Myers implies that manifolds with topology do not admit a metric of positive Ricci curvature, while the resolution of Geroch's conjecture implies that the torus does not admit a metric of positive scalar curvature. In this work we introduce a new notion of curvature interpolating between Ricci and scalar curvature (so‐calledm‐intermediate curvature), and use stable weighted slicings to show that for and the manifolds do not admit a metric of positivem‐intermediate curvature.more » « less
An official website of the United States government

