skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine Learning Interpretability of Outer Radiation Belt Enhancement and Depletion Events
Abstract We investigate the response of outer radiation belt electron fluxes to different solar wind and geomagnetic indices using an interpretable machine learning method. We reconstruct the electron flux variation during 19 enhancement and 7 depletion events and demonstrate the feature attribution analysis called SHAP (SHapley Additive exPlanations) on the superposed epoch results for the first time. We find that the intensity and duration of the substorm sequence following an initial dropout determine the overall enhancement or depletion of electron fluxes, while the solar wind pressure drives the initial dropout in both types of events. Further statistical results from a data set with 71 events confirm this and show a significant correlation between the resulting flux levels and the average AL index, indicating that the observed “depletion” event can be more accurately described as a “non‐enhancement” event. Our novel SHAP‐Enhanced Superposed Epoch Analysis (SHESEA) method can offer insight in various physical systems.  more » « less
Award ID(s):
2247255
PAR ID:
10508228
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
1
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dispersionless injection, involving sudden, simultaneous flux enhancements of energetic particles over a broad range of energy, is a characteristic signature of the particles that are experiencing a significant acceleration and/or rapid inward transport process. To provide clues to the physical processes that lead to the acceleration and transport of energetic ions in the dispersionless injection region, we conduct superposed epoch analyses of 75 dispersionless injection events identified by Van Allen Probes with focus on the species‐ and azimuthal angle‐ (φ) dependent signatures of ∼50–600 keV ions inside geosynchronous orbit. Our analysis shows that, on average, the light (hydrogen and helium) ion fluxes undergo a rapid, transient enhancement, while the heavy (oxygen) ion fluxes exhibit a more gradual, persisting enhancement. Such a species‐dependent behavior could be explained in terms of different gyro‐radius of the ion species. For events where the proton injection onset is 30–60 s earlier than the electron one, proton fluxes initially increase at smallφvalues (i.e., tailward guiding centers) and then at largerφvalues (earthward ones). The initial signatures suggest a result of the earthward transport of injected protons, as seen at the explosive growth phase. For events where both electron and proton fluxes increase simultaneously, on the other hand, proton fluxes isotropically increase with no significantφdependence. Such an isotropic proton flux enhancement may imply a local process in which charged protons are rapidly accelerated to higher energies at the spacecraft location. 
    more » « less
  2. Abstract We perform a comprehensive investigation of the statistical distribution of outer belt electron acceleration events over energies from 300 keV to ∼10 MeV regardless of storm activity using 6‐years of observations from Van Allen Probes. We find that the statistical properties of acceleration events are consistent with the characteristic energies of combined local acceleration by chorus waves and inward radial diffusion. While electron acceleration events frequently occur both at <2 MeV atL < 4.0 and at multi‐MeV atL > 4.5, significant acceleration events are confined toL > ∼4.0. By performing superposed epoch analysis of acceleration events during storm and non/weak storm events and comparing their geomagnetic conditions, we reveal the strong correlation (>0.8) between accumulated impacts of substorms as measured by time‐integrated AL (Int(AL)) and the upper flux limit of electron acceleration. While intense storms can provide favorable conditions for efficient acceleration, they are not necessarily required to produce large maximum fluxes. 
    more » « less
  3. Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1–2 days. By contrast, High‐Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing its dynamics. This in turn has an effect on the charged particles trapped in the outer radiation belt. Although the high‐energy electron flux enhancements have received considerable attention, the high‐energy electron flux enhancement pattern (L > 4) has not. This paper identifies 37 events with this enhancement pattern in the high‐energy electron flux during the Van Allen Probes era. We find the enhancements coincident with HSS occurrence. The interplanetary magnetic field (IMF) exhibits north/south Bz fluctuations of Alfvénic nature with moderate amplitudes. The high‐energy electron flux enhancements also correspond to long periods of auroral activity indicating a relationship to magnetotail dynamics. However, the AE index only reaches moderate values. Ultra‐Low Frequency waves were present in all of the events and whistler‐mode chorus waves were present in 89.1% of the events, providing a convenient scenario for wave‐particle interactions. The radial gradient of the ULF wave power related to theL, under the influence of the HSSs, is necessary to trigger the physical processes responsible for this type of high‐energy electron flux enhancement pattern. 
    more » « less
  4. The effect of the turbulence that is associated with solar wind corotating interaction regions (CIRs) on transport of galactic cosmic rays remains an outstanding problem in space science. Observations show that the intensities of the plasma and magnetic fluctuations are enhanced within a CIR. The velocity shear layer between the slow and fast wind embedded in a CIR is thought to be responsible for this enhancement in turbulent energy. We perform physics-based magnetohydrodynamic simulations of the plasma background and turbulent fluctuations in the solar wind dominated by CIRs for radial distances between 0.3 and 5 au. A simple but effective approach is used to incorporate the inner boundary conditions for the solar wind and magnetic field for the periods 2007–2008 and 2017–2018. Legendre coefficients at the source surface obtained from the Wilcox Solar Observatory library are utilized for dynamic reconstructions of the current sheet and the fast and slow streams at the inner boundary. The dynamic inner boundary enables our simulations to generate CIRs that are reasonably comparable with observations near Earth. While the magnetic field structure is reasonably well reproduced, the enhancements in the turbulent energy at the stream interfaces are smaller than observed. A superposed epoch analysis is performed over several CIRs from the simulation and compared to the superposed epoch analysis of the observed CIRs. The results for the turbulent energy and correlation length are used to estimate the diffusion tensor of galactic cosmic rays. The derived diffusion coefficients could be used for more realistic modeling of cosmic rays in a dynamically evolving inner heliosphere. 
    more » « less
  5. Abstract Although the effects of electromagnetic ion cyclotron (EMIC) waves on the dynamics of the Earth's outer radiation belt have been a topic of intense research for more than 20 years, their influence on rapid dropouts of electron flux has not yet been fully assessed. Here, we make use of contemporaneous measurements on the same ‐shell of trapped electron fluxes at 20,000 km altitude by Global Positioning System (GPS) spacecraft and of trapped and precipitating electron fluxes at 450 km altitude by Electron Losses and Fields Investigation (ELFIN) CubeSats in 2020–2022, to investigate the impact of EMIC wave‐driven electron precipitation on the dynamics of the outer radiation belt below the last closed drift shell of trapped electrons. During six of the seven selected events, the strong 1–2 MeV electron precipitation measured at ELFIN, likely driven by EMIC waves, occurs within 1–2 hr from a dropout of relativistic electron flux at GPS spacecraft. Using quasi‐linear diffusion theory, EMIC wave‐driven pitch angle diffusion rates are inferred from ELFIN measurements, allowing us to quantitatively estimate the corresponding flux drop based on typical spatial and temporal extents of EMIC waves. We find that EMIC wave‐driven electron precipitation alone can account for the observed dropout magnitude at 1.5–3 MeV during all events and that, when dropouts extend down to 0.5 MeV, a fraction of electron loss may sometimes be due to EMIC waves. This suggests that EMIC wave‐driven electron precipitation could modulate dropout magnitude above 1 MeV in the heart of the outer radiation belt. 
    more » « less