Abstract A multispecies energetic particle intensity enhancement event at 1 au is analyzed. We identify this event as a corotating interaction region (CIR) structure that includes a stream interface (SI), a forward-reverse shock pair, and an embedded heliospheric current sheet (HCS). The distinct feature of this CIR event is that (1) the high-energy (>1 MeV) ions show significant flux enhancement at the reverse wave (RW)/shock of the CIR structure, following their passage through the SI and HCS. The flux amplification appears to depend on the energy per nucleon. (2) Electrons in the energy range of 40.5–520 keV are accelerated immediately after passing through the SI and HCS regions, and the flux quickly reaches a peak for low-energy electrons. At the RW, only high-energy electrons (∼520 keV) show significant local flux enhancement. The CIR structure is followed by a fast-forward perpendicular shock driven by a coronal mass ejection (CME), and we observed a significant flux enhancement of low-energy protons and high-energy electrons. Specifically, the 210–330 keV proton and 180–520 keV electron fluxes are enhanced by approximately 2 orders of magnitude. This suggests that the later ICME-driven shock may accelerate particles out of the suprathermal pool. In this paper, we further present that for CIR-accelerated particles, the increase in turbulence power at SI and RWs may be an important factor for the observed flux enhancement in different species. The presence of ion-scale waves near the RW, as indicated by the spectral bump near the proton gyrofrequency, suggests that the resonant wave–particle interaction may act as an efficient energy transferrer between energetic protons and ion-scale waves.
more »
« less
This content will become publicly available on June 1, 2026
Species‐Dependent and Azimuthally‐Directional Flux Changes of Dispersionless Ion Injections Inside Geosynchronous Orbit
Abstract Dispersionless injection, involving sudden, simultaneous flux enhancements of energetic particles over a broad range of energy, is a characteristic signature of the particles that are experiencing a significant acceleration and/or rapid inward transport process. To provide clues to the physical processes that lead to the acceleration and transport of energetic ions in the dispersionless injection region, we conduct superposed epoch analyses of 75 dispersionless injection events identified by Van Allen Probes with focus on the species‐ and azimuthal angle‐ (φ) dependent signatures of ∼50–600 keV ions inside geosynchronous orbit. Our analysis shows that, on average, the light (hydrogen and helium) ion fluxes undergo a rapid, transient enhancement, while the heavy (oxygen) ion fluxes exhibit a more gradual, persisting enhancement. Such a species‐dependent behavior could be explained in terms of different gyro‐radius of the ion species. For events where the proton injection onset is 30–60 s earlier than the electron one, proton fluxes initially increase at smallφvalues (i.e., tailward guiding centers) and then at largerφvalues (earthward ones). The initial signatures suggest a result of the earthward transport of injected protons, as seen at the explosive growth phase. For events where both electron and proton fluxes increase simultaneously, on the other hand, proton fluxes isotropically increase with no significantφdependence. Such an isotropic proton flux enhancement may imply a local process in which charged protons are rapidly accelerated to higher energies at the spacecraft location.
more »
« less
- Award ID(s):
- 2224986
- PAR ID:
- 10627216
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 130
- Issue:
- 6
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The anisotropy of energetic particles provides essential information to help resolve the underlying fundamental physics of their spatial distributions, injection, acceleration, and transport processes. In this work, we report an energetic ion enhancement that is characterized by very large and long-lasting anisotropies observed by STEREO A and Solar Orbiter, which are nearly aligned along the same nominal Parker spiral. This ion enhancement appears at the rising phase of a widespread solar energetic particle event that was associated with the farside coronal mass ejection on 2022 February 15. According to our analysis, the long-lasting anisotropy resulted from the continuous injection of energetic ions from a well-connected particle source located beyond the STEREO A’s orbit. Solar Orbiter also observed an interval of very large anisotropy dominated exclusively by sunward streaming ions but with the additional implication that it detected the very early phase of ion injections onto magnetic field lines that newly connected to the particle source, which is likely the first reported event of this kind. These results further illustrate how energetic particle anisotropy information, in particular from multiple observer locations, can be used to disentangle the sources and transport processes of energetic ions, even when their heliospheric context is not simple.more » « less
-
Abstract The waves generated by high-energy proton and alpha particles streaming from solar flares into regions of colder plasma are explored using particle-in-cell simulations. Initial distribution functions for the protons and alphas consist of two populations: an energetic, streaming population represented by an anisotropic (T∥>T⊥), one-sided kappa function and a cold, Maxwellian background population. The anisotropies and nonzero heat fluxes of these distributions destabilize oblique waves with a range of frequencies below the proton cyclotron frequency. These waves scatter particles out of the tails of the initial distributions along constant-energy surfaces in the wave frame. Overlap of the nonlinear resonance widths allows particles to scatter into near-isotropic distributions by the end of the simulations. The dynamics of3He are explored using test particles. Their temperatures can increase by a factor of nearly 20. Propagation of such waves into regions above and below the flare site can lead to heating and transport of3He into the flare acceleration region. The amount of heated3He that will be driven into the flare site is proportional to the wave energy. Using values from our simulations, we show that the abundance of3He driven into the acceleration region should approach that of4He in the corona. Therefore, waves driven by energetic ions produced in flares are a strong candidate to drive the enhancements of3He observed in impulsive flares.more » « less
-
Abstract The acceleration of charged particles by interplanetary shocks (IPs) can drain a nonnegligible fraction of the plasma pressure. In this study, we have selected 17 IPs observed in situ at 1 au by the Advanced Composition Explorer and the Wind spacecraft, and 1 shock at 0.8 au observed by Parker Solar Probe. We have calculated the time-dependent partial pressure of suprathermal and energetic particles (smaller and greater than 50 keV for protons and 30 keV for electrons, respectively) in both the upstream and downstream regions. The particle fluxes were averaged for 1 hr before and 1 hr after the shock time to remove short timescale effects. Using the MHD Rankine–Hugoniot jump conditions, we find that the fraction of the total upstream energy flux transferred to suprathermal and energetic downstream particles is typically ≲16%, in agreement with previous observations and simulations. Notably, by accounting for errors on all measured shock parameters, we have found that for any given fast magnetosonic Mach number,Mf< 7, the angle between the shock normal and average upstream magnetic field,θBn, is not correlated with the energetic particle pressure; in particular, the partial pressure of energized particles does not decrease forθBn≳ 45°. The downstream electron-to-proton energy ratio in the range ≳ 140 eV for electrons and ≳ 70 keV for protons exceeds the expected ∼1% and nears equipartition (>0.1) for the Wind events.more » « less
-
Abstract Energetic electron flux enhancements for 100s keV energies are often observed at lowLshells (L < 4) in the inner magnetosphere during geomagnetic storms. However, protons with similar energies do not penetrate as deeply as electrons. Electric fields from subauroral polarization streams (SAPS) have been proposed as a mechanism to explain the difference between the 100s keV electron and proton behavior by altering the particles’ drift paths and allowing electrons to access lowerLshells than protons. Although the primary signature of SAPS is a strong radial electric field, there are corresponding westward/eastward azimuthal electric fields on the eastern/western regions of the SAPS that cause inward/outward radial transport and a differential response between the oppositely drifting electrons and protons. We examine three events where SAPS were observed by the Van Allen Probes near the same time andLshell range as 100s keV electron enhancements deep within the inner magnetosphere. The observations demonstrate that 100s keV electrons were progressively transported radially inward and trapped at lowLshells that were consistent with the spatial extent of the SAPS electric fields. Proton flux enhancements were limited to <100 keV energies and were only observed temporarily in the SAPS region, indicating that these particles were on open drift paths. The particle observations are consistent with the differential drift paths for electrons and protons predicted by a simple SAPS electric field model, suggesting that SAPS play an important role in 100s keV particle dynamics at lowLshells in the inner magnetosphere.more » « less
An official website of the United States government
