skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental and numerical investigation of shelf flow crossing over a strait
Abstract Motivated by the phenomenon of Scotian Shelf Crossover events, the problem of a shelf flow that is interrupted by a strait is considered. Laboratory experiments in a rotating tank with barotropic and baroclinic flow over flat and sloping shelves confirm that the flow is steered by the bathymetric contours and mainly circumnavigates the gulf. In order to jump across the strait, as suggested by earlier theories, the flow must have unrealistically high Rossby numbers. However, the near bottom friction relaxes the bathymetric constraint and causes the formation of a peculiar jet crossing the strait diagonally. For the dissipation values such that a half of the transport goes around the gulf and half crosses the strait diagonally, the diagonal crossover jet becomes most evident. Numerical solutions for realistic values of the frictional parameter reproduce the results of the laboratory experiments and consideration of the actual Gulf of Maine bathymetry reproduces patterns similar to those observed by drift trajectories and in the satellite derived sea surface temperature fields.  more » « less
Award ID(s):
2232442
PAR ID:
10508325
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Ocean Dynamics
Volume:
74
Issue:
6
ISSN:
1616-7341
Format(s):
Medium: X Size: p. 525-537
Size(s):
p. 525-537
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Knowledge of the behaviour of marine‐based ice sheets during times of climatic warming, such as the last deglaciation, provides important information to understand how ice sheets respond to external forcing. We analysed swath bathymetric and acoustic sub‐bottom profiler data from Wrigley Gulf on the western Amundsen Sea shelf, West Antarctica, to identify glacial features and reconstruct past changes in the extent of the West Antarctic Ice Sheet (WAIS) and ice flow directions. Glacial bedforms mapped within a bathymetric cross‐shelf trough include features showing cross‐cutting and overprinting relationship and indicate changes in ice‐flow orientation. Here, we distinguish at least two phases of different ice‐flow patterns on the Wrigley Gulf shelf. During the earlier phase, seaward ice stream flow on the inner shelf was deflected towards the east due to the existence of an ice dome on the middle‐outer continental shelf. Retreat of grounded ice towards the centre of this dome is indicated by the asymmetric cross profile of recessional moraines mapped on the middle shelf. The later glaciation phase was characterized by fast, NNW‐directed ice flow across the shelf along a broad front and subsequent stepwise landward retreat, which is evident from the common occurrence and orientation of mega‐scale glaciation lineations and grounding zone wedges on the middle‐inner shelf. It is uncertain whether the two phases of glaciation recorded on the seafloor occurred during the last and penultimate glacial periods or at different times of the last glaciation. Reliable chronological constraints from sediment cores and additional geomorphological information are needed to understand the cause of the changes in WAIS dynamics reflected by the two ice‐flow phases. 
    more » « less
  2. null (Ed.)
    Export from the Arctic and meltwater from the Greenland Ice Sheet together form a southward-flowing coastal current along the East Greenland shelf. This current transports enough fresh water to substantially alter the large-scale circulation of the North Atlantic, yet the coastal current’s origin and fate are poorly known due to our lack of knowledge concerning its north-south connectivity. Here, we demonstrate how the current negotiates the complex topography of Denmark Strait using in situ data and output from an ocean circulation model. We determine that the coastal current north of the strait supplies half of the transport to the coastal current south of the strait, while the other half is sourced from offshore via the shelfbreak jet, with little input from the Greenland Ice Sheet. These results indicate that there is a continuous pathway for Arctic-sourced fresh water along the entire East Greenland shelf from Fram Strait to Cape Farewell. 
    more » « less
  3. Abstract The dynamics of ocean‐estuary exchange depend on a variety of local and remote ocean forcing mechanisms where local mechanisms include those directly forcing the estuary such as tides, river discharge, and local wind stress; remote forcing includes forcing from the ocean such as coastal wind stress and coastal stratification variability. We use a numerical model to investigate the limits of oceanic influence, such as wind‐driven upwelling, on the Salish Sea exchange flow and salt transport. We find that along‐shelf winds substantially modulate flow throughout the Strait of Juan de Fuca until flow reaches sill‐influenced constrictions. At these constrictions the exchange flow variability becomes sensitive to local tidal and river forcing. The salt exchange variability is tidally dominated at Admiralty Inlet and upwelling has little impact on seasonal salt exchange variability. While within Haro Strait, the salt exchange variability is driven by a mix of coastal upwelling and local forcing including river discharge. There, the transition from oceanic to local control of salt exchange occurs over a longer distance and is primarily identifiable in the increasing variability of bulk outflowing salinity values. The differences between the two locations highlight how ocean variability interacts with both tidal pumping and gravitational circulation. We also distinguish between transient ocean forcing which can modify fjord properties near the mouth of the strait and seasonal ocean forcing which primarily affects along‐strait pressure gradients. The results have implications for understanding the transport variability of biogeochemical variables that are influenced by both along‐shelf winds and local sources. 
    more » « less
  4. Abstract The North Icelandic Irminger Current (NIIC) flowing northward through Denmark Strait is the main source of salt and heat to the north Iceland shelf. We quantify its along‐stream evolution using the first high‐resolution hydrographic/velocity survey north of Iceland that spans the entire shelf along with historical hydrographic measurements as well as data from satellites and surface drifters. The NIIC generally follows the shelf break. Portions of the flow recirculate near Denmark Strait and the Kolbeinsey Ridge. The current's volume transport diminishes northeast of Iceland before it merges with the Atlantic Water inflow east of Iceland. The hydrographic properties of the current are modified along its entire pathway, predominantly because of lateral mixing with cold, fresh offshore waters rather than air‐sea interaction. Progressing eastward, the NIIC cools and freshens by approximately 0.3°C and 0.02–0.03 g kg−1per 100 km, respectively, in both summer and winter. Dense‐water formation on the shelf is limited, occurring only sporadically in the historical record. The hydrographic properties of this locally formed water match the lighter portion of the North Icelandic Jet (NIJ), which emerges northeast of Iceland and transports dense water toward Denmark Strait. In the region northeast of Iceland, the NIIC is prone to baroclinic instability. Enhanced eddy kinetic energy over the steep slope there suggests a dynamical link between eddies shed by the NIIC and the formation of the NIJ as previously hypothesized. Thus, while the NIIC rarely supplies the NIJ directly, it may be dynamically important for the overturning circulation in the Nordic Seas. 
    more » « less
  5. Abstract Repeat measurements of velocity and temperature profiles from the Container Motor Vessel (CMV) Oleander provide an unprecedented look into the variability on the New Jersey Shelf and upper continental slope. Here 1362 acoustic Doppler current profiler (ADCP) velocity sections collected between 1994 and 2018 are analyzed in both Eulerian and stream coordinate reference frames to characterize the mean structure of the Shelfbreak Jet, as well as its seasonal to decadal variability. The Eulerian mean Shelfbreak Jet has a maximum jet velocity of 0.12 m s−1. The maximum jet velocity peaks in April and May and reaches its minimum in July and August. In a stream coordinate framework, the jet is only identified in 61% of transects, and the mean stream coordinate Shelfbreak Jet has a maximum jet velocity of 0.32 m s−1. Evidence is found that Warm Core Rings, originating from the Gulf Stream arriving in the Slope Sea adjacent to the New Jersey Shelf, shift the Shelfbreak Jet onshore of its mean position or entirely shutdown the Shelfbreak Jet's flow. At interannual timescales, variability in the Shelfbreak Jet velocity is correlated with the temperature on the New Jersey Shelf 2 months later. When considered in a stream coordinate framework, Shelfbreak Jet have decreased over the time period considered in the study. 
    more » « less