skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using classifiers to understand coarse-grained models and their fidelity with the underlying all-atom systems
Bottom-up coarse-grained (CG) molecular dynamics models are parameterized using complex effective Hamiltonians. These models are typically optimized to approximate high dimensional data from atomistic simulations. However, human validation of these models is often limited to low dimensional statistics that do not necessarily differentiate between the CG model and said atomistic simulations. We propose that classification can be used to variationally estimate high dimensional error and that explainable machine learning can help convey this information to scientists. This approach is demonstrated using Shapley additive explanations and two CG protein models. This framework may also be valuable for ascertaining whether allosteric effects at the atomistic level are accurately propagated to a CG model.  more » « less
Award ID(s):
2102677
PAR ID:
10508660
Author(s) / Creator(s):
;
Publisher / Repository:
The Journal of Chemical Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
158
Issue:
23
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Efficient sampling of the conformational space is essential for quantitative simulations of proteins. The multiscale enhanced sampling (MSES) method accelerates atomistic sampling by coupling it to a coarse‐grained (CG) simulation. Bias from coupling to the CG model is removed using Hamiltonian replica exchange, such that one could benefit simultaneously from the high accuracy of atomistic models and fast dynamics of CG ones. Here, we extend MSES to allow independent control of the effective temperatures of atomistic and CG simulations, by directly scaling the atomistic and CG Hamiltonians. The new algorithm, named MSES with independent tempering (MSES‐IT), supports more sophisticated Hamiltonian and temperature replica exchange protocols to further improve the sampling efficiency. Using a small but nontrivial β‐hairpin, we show that setting the effective temperature of CG model in all conditions to its melting temperature maximizes structural transition rates at the CG level and promotes more efficient replica exchange and diffusion in the condition space. As the result, MSES‐IT drive faster reversible transitions at the atomic level and leads to significant improvement in generating converged conformational ensembles compared to the original MSES scheme. 
    more » « less
  2. The integral equation coarse-graining (IECG) approach is a promising high-level coarse-graining (CG) method for polymer melts, with variable resolution from soft spheres to multi CG sites, which preserves the structural and thermodynamical consistencies with the related atomistic simulations. When compared to the atomistic description, the procedure of coarse-graining results in smoother free energy surfaces, longer-ranged potentials, a decrease in the number of interaction sites for a given polymer, and more. Because these changes have competing effects on the computational efficiency of the CG model, care needs to be taken when studying the effect of coarse-graining on the computational speed-up in CG molecular dynamics simulations. For instance, treatment of long-range CG interactions requires the selection of cutoff distances that include the attractive part of the effective CG potential and force. In particular, we show how the complex nature of the range and curvature of the effective CG potential, the selection of a suitable CG timestep, the choice of the cutoff distance, the molecular dynamics algorithms, and the smoothness of the CG free energy surface affect the efficiency of IECG simulations. By direct comparison with the atomistic simulations of relatively short chain polymer melts, we find that the overall computational efficiency is highest for the highest level of CG (soft spheres), with an overall improvement of the computational efficiency being about 10 6 –10 8 for various CG levels/resolutions. Therefore, the IECG method can have important applications in molecular dynamics simulations of polymeric systems. Finally, making use of the standard spatial decomposition algorithm, the parallel scalability of the IECG simulations for various levels of CG is presented. Optimal parallel scaling is observed for a reasonably large number of processors. Although this study is performed using the IECG approach, its results on the relation between the level of CG and the computational efficiency are general and apply to any properly-constructed CG model. 
    more » « less
  3. Polyelectrolyte solutions are of considerable scientific and practical importance. One of the most widely studied polymer is polystyrene sulfonate (PSS), which has a hydrophobic backbone with pendant charged groups. A polycation with similar chemical structure is poly(vinyl benzyltri methyl) ammonium (PVBTMA). In this work, we develop coarse-grained (CG) models for PSS and PVBTMA with explicit CG water and with sodium and chloride counterions, respectively. We benchmark the CG models via a comparison with atomistic simulations for single chains. We find that the choice of the topology and the partial charge distribution of the CG model, both play a crucial role in the ability of the CG model to reproduce results from atomistic simulations. There are dramatic consequences, e.g., collapse of polyions, with injudicious choices of the local charge distribution. The polyanions and polycations exhibit a similar conformational and dynamical behavior, suggesting that the sign of the polyion charge does not play a significant role. 
    more » « less
  4. Bottom-up coarse-grained (CG) modeling is an effective means of bypassing the limited spatiotemporal scales of conventional atomistic molecular dynamics while retaining essential information from the atomistic model. A central challenge in CG modeling is the trade-off between accuracy and efficiency, as the inclusion of often pivotal many-body interaction terms in the CG force-field renders simulation markedly slower than simple pairwise models. The Ultra Coarse-Graining (UCG) method incorporates many-body terms through discrete internal state variables that modulate the CG force-field according to, e.g., changes in local environment when substantial chemical heterogeneities exist. However, assigning optimal internal states systematically from atomistic simulation data, as well as the practical application of bottom-up UCG theory to biomolecular systems, remain open problems. We develop two synergistic methods to aid in the development of UCG models that can capture inhomogeneities in atomistic systems such as those induced by phase coexistence. The first method establishes the systematic construction of UCG force-fields from a relative entropy minimization principle, while the second method utilizes machine-learning to obtain optimal local order parameters for enhanced model efficiency and transferability. We apply these methods to a methanol liquid–vapor interface and the ripple phase of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipid bilayer and demonstrate that UCG modeling alone recapitulates aspects of phase coexistence that are otherwise not observed in CG modeling. 
    more » « less
  5. Our analytically based technique for coarse-graining (CG) polymer simulations dramatically improves spatial and temporal scaling while preserving thermodynamic quantities and bulk properties. The purpose of CG codes is to run more efficient molecular dynamics simulations, yet the research field generally lacks thorough analysis of how such codes scale with respect to full-atom representations. This paper conducts an in-depth performance study of highly realistic polymer melts on modern supercomputing systems. We also present a workflow that integrates our analytical solution for calculating CG forces with new high-performance techniques for mapping back and forth between the atomistic and CG descriptions in LAMMPS. The workflow benefits from the performance of CG, while maintaining full-atom accuracy. Our results show speedups up to 12x faster than atomistic simulations. 
    more » « less