skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RACER-m leverages structural features for sparse T cell specificity prediction
Reliable prediction of T cell specificity against antigenic signatures is a formidable task, complicated by the immense diversity of T cell receptor and antigen sequence space and the resulting limited availability of training sets for inferential models. Recent modeling efforts have demonstrated the advantage of incorporating structural information to overcome the need for extensive training sequence data, yet disentangling the heterogeneous TCR-antigen interface to accurately predict MHC-allele-restricted TCR-peptide interactions has remained challenging. Here, we present RACER-m, a coarse-grained structural model leveraging key biophysical information from the diversity of publicly available TCR-antigen crystal structures. Explicit inclusion of structural content substantially reduces the required number of training examples and maintains reliable predictions of TCR-recognition specificity and sensitivity across diverse biological contexts. Our model capably identifies biophysically meaningful point-mutant peptides that affect binding affinity, distinguishing its ability in predicting TCR specificity of point-mutants from alternative sequence-based methods. Its application is broadly applicable to studies involving both closely related and structurally diverse TCR-peptide pairs.  more » « less
Award ID(s):
2210291 2019745
PAR ID:
10508740
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI: 10.1126/sciadv.adl0161
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
20
ISSN:
2375-2548
Page Range / eLocation ID:
eadl016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Antunes, Dinler Amaral (Ed.)
    T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC) interactions play a vital role in initiating immune responses against pathogens, and the specificity of TCRpMHC interactions is crucial for developing optimized therapeutic strategies. The advent of high-throughput immunological and structural evaluation of TCR and pMHC has provided an abundance of data for computational approaches that aim to predict favorable TCR-pMHC interactions. Current models are constructed using information on protein sequence, structures, or a combination of both, and utilize a variety of statistical learning-based approaches for identifying the rules governing specificity. This review examines the current theoretical, computational, and deep learning approaches for identifying TCR-pMHC recognition pairs, placing emphasis on each method’s mathematical approach, predictive performance, and limitations. 
    more » « less
  2. The diverse T cell receptor (TCR) repertoire confers the ability to recognize an almost unlimited array of antigens. Characterization of antigen specificity of tumor-infiltrating lymphocytes (TILs) is key for understanding antitumor immunity and for guiding the development of effective immunotherapies. Here, we report a large-scale comprehensive examination of the TCR landscape of TILs across the spectrum of pediatric brain tumors, the leading cause of cancer-related mortality in children. We show that a T cell clonality index can inform patient prognosis, where more clonality is associated with more favorable outcomes. Moreover, TCR similarity groups’ assessment revealed patient clusters with defined human leukocyte antigen associations. Computational analysis of these clusters identified putative tumor antigens and peptides as targets for antitumor T cell immunity, which were functionally validated by T cell stimulation assays in vitro. Together, this study presents a framework for tumor antigen prediction based on in situ and in silico TIL TCR analyses. We propose that TCR-based investigations should inform tumor classification and precision immunotherapy development. 
    more » « less
  3. Transgenic coexpression of a class I–restricted tumor antigen–specific T cell receptor (TCR) and CD8αβ (TCR8) redirects antigen specificity of CD4 + T cells. Reinforcement of biophysical properties and early TCR signaling explain how redirected CD4 + T cells recognize target cells, but the transcriptional basis for their acquired antitumor function remains elusive. We, therefore, interrogated redirected human CD4 + and CD8 + T cells by single-cell RNA sequencing and characterized them experimentally in bulk and single-cell assays and a mouse xenograft model. TCR8 expression enhanced CD8 + T cell function and preserved less differentiated CD4 + and CD8 + T cells after tumor challenge. TCR8 + CD4 + T cells were most potent by activating multiple transcriptional programs associated with enhanced antitumor function. We found sustained activation of cytotoxicity, costimulation, oxidative phosphorylation– and proliferation-related genes, and simultaneously reduced differentiation and exhaustion. Our study identifies molecular features of TCR8 expression that can guide the development of enhanced immunotherapies. 
    more » « less
  4. Morel, Penelope Anne (Ed.)
    IntroductionT-cell receptors (TCRs) play a critical role in the immune response by recognizing specific ligand peptides presented by major histocompatibility complex (MHC) molecules. Accurate prediction of peptide binding to TCRs is essential for advancing immunotherapy, vaccine design, and understanding mechanisms of autoimmune disorders. MethodsThis study presents a theoretical approach that explores the impact of feature selection techniques on enhancing the predictive accuracy of peptide binding models tailored for specific TCRs. To evaluate our approach across different TCR systems, we utilized a dataset that includes peptide libraries tested against three distinct murine TCRs. A broad range of physicochemical properties, including amino acid composition, dipeptide composition, and tripeptide features, were integrated into the machine learning-based feature selection framework to identify key properties contributing to binding affinity. ResultsOur analysis reveals that leveraging optimized feature subsets not only simplifies the model complexity but also enhances predictive performance, enabling more precise identification of TCR peptide interactions. The results of our feature selection method are consistent with findings from hybrid approaches that utilize both sequence and structural data as input as well as experimental data. DiscussionOur theoretical approach highlights the role of feature selection in peptide-TCR interactions, providing a quantitative tool for uncovering the molecular mechanisms of the T-cell response and assisting in the design of more advanced targeted therapeutics. 
    more » « less
  5. The T cell receptor (TCR) initiates the elimination of pathogens and tumors by T cells. To avoid damage to the host, the receptor must be capable of discriminating between wild-type and mutated self and nonself peptide ligands presented by host cells. Exactly how the TCR does this is unknown. In resting T cells, the TCR is largely unphosphorylated due to the dominance of phosphatases over the kinases expressed at the cell surface. However, when agonist peptides are presented to the TCR by major histocompatibility complex proteins expressed by antigen-presenting cells (APCs), very fast receptor triggering, i.e., TCR phosphorylation, occurs. Recent work suggests that this depends on the local exclusion of the phosphatases from regions of contact of the T cells with the APCs. Here, we developed and tested a quantitative treatment of receptor triggering reliant only on TCR dwell time in phosphatase-depleted cell contacts constrained in area by cell topography. Using the model and experimentally derived parameters, we found that ligand discrimination likely depends crucially on individual contacts being ∼200 nm in radius, matching the dimensions of the surface protrusions used by T cells to interrogate their targets. The model not only correctly predicted the relative signaling potencies of known agonists and nonagonists but also achieved this in the absence of kinetic proofreading. Our work provides a simple, quantitative, and predictive molecular framework for understanding why TCR triggering is so selective and fast and reveals that, for some receptors, cell topography likely influences signaling outcomes. 
    more » « less