skip to main content


This content will become publicly available on April 16, 2025

Title: A bis(PCN) palladium pincer complex with a remarkably planar 2,5-diarylpyrazine core
A bimetallic Pd complex of a bis(pincer) with a diarylpyrazine core has been prepared.  more » « less
Award ID(s):
2102324
PAR ID:
10508754
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Dalton Transactions
Volume:
53
Issue:
15
ISSN:
1477-9226
Page Range / eLocation ID:
6520 to 6523
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a (very) simple version of the restricted three body problem in general relativity. The background geometry is given by a Schwarzschild solution governing the motion of two bodies of masses $m_1$ and $m_2$. We assume that corrections to the trajectory of the body of mass $m_1$ due to the presence of the mass $m_2$ are given by a Newtonian approximation where Poisson's equation is solved with respect to the Schwarzschild background geometry. Under these assumptions, we derive approximate equations of motion for the corrections to the trajectory of the body of mass $m_1$. 
    more » « less
  2. Abstract We study both the practical and theoretical efficiency of private information retrieval (PIR) protocols in a model wherein several untrusted servers work to obliviously service remote clients’ requests for data and yet no pair of servers colludes in a bid to violate said obliviousness. In exchange for such a strong security assumption, we obtain new PIR protocols exhibiting remarkable efficiency with respect to every cost metric—download, upload, computation, and round complexity—typically considered in the PIR literature. The new constructions extend a multiserver PIR protocol of Shah, Rashmi, and Ramchandran (ISIT 2014), which exhibits a remarkable property of its own: to fetch a b -bit record from a collection of r such records, the client need only download b + 1 bits total. We find that allowing “a bit more” download (and optionally introducing computational assumptions) yields a family of protocols offering very attractive trade-offs. In addition to Shah et al.’s protocol, this family includes as special cases (2-server instances of) the seminal protocol of Chor, Goldreich, Kushilevitz, and Sudan (FOCS 1995) and the recent DPF-based protocol of Boyle, Gilboa, and Ishai (CCS 2016). An implicit “folklore” axiom that dogmatically permeates the research literature on multiserver PIR posits that the latter protocols are the “most efficient” protocols possible in the perfectly and computationally private settings, respectively. Yet our findings soundly refute this supposed axiom: These special cases are (by far) the least performant representatives of our family, with essentially all other parameter settings yielding instances that are significantly faster. 
    more » « less
  3. We consider the dynamics of a pendulum made of a rigid ring attached to an elastic filament immersed in a flowing soap film. The system shows an oscillatory instability whose onset is a function of the flow speed, length of the supporting string, the ring mass, and ring radius. We characterize this system and show that there are different regimes where the frequency is dependent or independent of the pendulum length depending on the relative magnitude of the added-mass. Although the system is an infinite-dimensional, we can explain many of our results in terms of a one degree-of-freedom system corresponding to a forced pendulum. Indeed, using the vorticity measured via particle imaging velocimetry allows us to make the model quantitative, and a comparison with our experimental results shows we can capture the basic phenomenology of this system.

     
    more » « less
  4. A simple genetic switch controls a color pattern polymorphism, and in silico modeling supports a role for cell migration. 
    more » « less
  5. Abstract The proton radius puzzle is known as the discrepancy of the proton radius, obtained from muonic hydrogen spectroscopy (obtained as being roughly equal to 0.84 fm), and the proton radius obtained from (ordinary) hydrogen spectroscopy where a number of measurements involving highly excited states have traditionally favored a value of about 0.88 fm. Recently, a number of measurements of hydrogen transitions by the Munich (Garching) groups (notably, several hyperfine-resolved sublevels of the 2 S –4 P ) and by the group at the University of Toronto (2 S –2 P 1/2 ) have led to transition frequency data consistent with the smaller proton radius of about 0.84 fm. A recent measurement of the 2 S –8 D transition by a group at Colorado State University leads to a proton radius of about 0.86 fm, in between the two aforementioned results. The current situation points to a possible, purely experimental, resolution of the proton radius puzzle. However, a closer look at the situation reveals that the situation may be somewhat less clear, raising the question of whether or not the proton radius puzzle has been conclusively solved, and opening up interesting experimental possiblities at TRIUMF/ARIEL. 
    more » « less