skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Newton polygons and resonances of multiple delta-potentials
We prove explicit asymptotics for the location of semiclassical scattering resonances in the setting of h h -dependent delta-function potentials on R \mathbb {R} . In the cases of two or three delta poles, we are able to show that resonances occur along specific lines of the form Im ⁡<#comment/> z ∼<#comment/> −<#comment/> γ<#comment/> h log ⁡<#comment/> ( 1 / h ) . \operatorname {Im}z \sim -\gamma h \log (1/h). More generally, we use the method of Newton polygons to show that resonances near the real axis may only occur along a finite collection of such lines, and we bound the possible number of values of the parameter γ<#comment/> . \gamma . We present numerical evidence of the existence of more and more possible values of γ<#comment/> \gamma for larger numbers of delta poles.  more » « less
Award ID(s):
2307384 2054424
PAR ID:
10508775
Author(s) / Creator(s):
; ;
Publisher / Repository:
Transactions of the AMS
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that for primes N , p ≥<#comment/> 5 N, p \geq 5 with N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , the class number of Q ( N 1 / p ) \mathbb {Q}(N^{1/p}) is divisible by p p . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , there is always a cusp form of weight 2 2 and level Γ<#comment/> 0 ( N 2 ) \Gamma _0(N^2) whose ℓ<#comment/> \ell th Fourier coefficient is congruent to ℓ<#comment/> + 1 \ell + 1 modulo a prime above p p , for all primes ℓ<#comment/> \ell . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- p p extension of Q ( N 1 / p ) \mathbb {Q}(N^{1/p})
    more » « less
  2. Let Ω<#comment/> + ⊂<#comment/> R n + 1 \Omega ^+\subset \mathbb {R}^{n+1} be a bounded δ<#comment/> \delta -Reifenberg flat domain, with δ<#comment/> > 0 \delta >0 small enough, possibly with locally infinite surface measure. Assume also that Ω<#comment/> −<#comment/> = R n + 1 ∖<#comment/> Ω<#comment/> + ¯<#comment/> \Omega ^-= \mathbb {R}^{n+1}\setminus \overline {\Omega ^+} is an NTA (non-tangentially accessible) domain as well and denote by ω<#comment/> + \omega ^+ and ω<#comment/> −<#comment/> \omega ^- the respective harmonic measures of Ω<#comment/> + \Omega ^+ and Ω<#comment/> −<#comment/> \Omega ^- with poles p ±<#comment/> ∈<#comment/> Ω<#comment/> ±<#comment/> p^\pm \in \Omega ^\pm . In this paper we show that the condition that log ⁡<#comment/> d ω<#comment/> −<#comment/> d ω<#comment/> + ∈<#comment/> VMO ⁡<#comment/> ( ω<#comment/> + ) \log \dfrac {d\omega ^-}{d\omega ^+} \in \operatorname {VMO}(\omega ^+) is equivalent to Ω<#comment/> + \Omega ^+ being a chord-arc domain with inner unit normal belonging to VMO ⁡<#comment/> ( H n | ∂<#comment/> Ω<#comment/> + ) \operatorname {VMO}(\mathcal {H}^n|_{\partial \Omega ^+})
    more » « less
  3. We show that every Borel graph G G of subexponential growth has a Borel proper edge-coloring with Δ<#comment/> ( G ) + 1 \Delta (G) + 1 colors. We deduce this from a stronger result, namely that an n n -vertex (finite) graph G G of subexponential growth can be properly edge-colored using Δ<#comment/> ( G ) + 1 \Delta (G) + 1 colors by an O ( log ∗<#comment/> ⁡<#comment/> n ) O(\log ^\ast n) -round deterministic distributed algorithm in theLOCALmodel, where the implied constants in the O ( ⋅<#comment/> ) O(\cdot ) notation are determined by a bound on the growth rate of G G
    more » « less
  4. We formulate a plausible conjecture for the optimal Ehrhard-type inequality for convex symmetric sets with respect to the Gaussian measure. Namely, letting J k −<#comment/> 1 ( s ) = ∫<#comment/> 0 s t k −<#comment/> 1 e −<#comment/> t 2 2 d t J_{k-1}(s)=\int ^s_0 t^{k-1} e^{-\frac {t^2}{2}}dt and c k −<#comment/> 1 = J k −<#comment/> 1 ( + ∞<#comment/> ) c_{k-1}=J_{k-1}(+\infty ) , we conjecture that the function F : [ 0 , 1 ] →<#comment/> R F:[0,1]\rightarrow \mathbb {R} , given by F ( a ) = ∑<#comment/> k = 1 n 1 a ∈<#comment/> E k ⋅<#comment/> ( β<#comment/> k J k −<#comment/> 1 −<#comment/> 1 ( c k −<#comment/> 1 a ) + α<#comment/> k ) \begin{equation*} F(a)= \sum _{k=1}^n 1_{a\in E_k}\cdot (\beta _k J_{k-1}^{-1}(c_{k-1} a)+\alpha _k) \end{equation*} (with an appropriate choice of a decomposition [ 0 , 1 ] = ∪<#comment/> i E i [0,1]=\cup _{i} E_i and coefficients α<#comment/> i , β<#comment/> i \alpha _i, \beta _i ) satisfies, for all symmetric convex sets K K and L L , and any λ<#comment/> ∈<#comment/> [ 0 , 1 ] \lambda \in [0,1] , F ( γ<#comment/> ( λ<#comment/> K + ( 1 −<#comment/> λ<#comment/> ) L ) ) ≥<#comment/> λ<#comment/> F ( γ<#comment/> ( K ) ) + ( 1 −<#comment/> λ<#comment/> ) F ( γ<#comment/> ( L ) ) . \begin{equation*} F\left (\gamma (\lambda K+(1-\lambda )L)\right )\geq \lambda F\left (\gamma (K)\right )+(1-\lambda ) F\left (\gamma (L)\right ). \end{equation*} We explain that this conjecture is “the most optimistic possible”, and is equivalent to the fact that for any symmetric convex set K K , itsGaussian concavity power p s ( K , γ<#comment/> ) p_s(K,\gamma ) is greater than or equal to p s ( R B 2 k ×<#comment/> R n −<#comment/> k , γ<#comment/> ) p_s(RB^k_2\times \mathbb {R}^{n-k},\gamma ) , for some k ∈<#comment/> { 1 , …<#comment/> , n } k\in \{1,\dots ,n\} . We call the sets R B 2 k ×<#comment/> R n −<#comment/> k RB^k_2\times \mathbb {R}^{n-k} round k k -cylinders; they also appear as the conjectured Gaussian isoperimetric minimizers for symmetric sets, see Heilman [Amer. J. Math. 143 (2021), pp. 53–94]. In this manuscript, we make progress towards this question, and show that for any symmetric convex set K K in R n \mathbb {R}^n , p s ( K , γ<#comment/> ) ≥<#comment/> sup F ∈<#comment/> L 2 ( K , γ<#comment/> ) ∩<#comment/> L i p ( K ) : ∫<#comment/> F = 1 ( 2 T γ<#comment/> F ( K ) −<#comment/> V a r ( F ) ) + 1 n −<#comment/> E X 2 , \begin{equation*} p_s(K,\gamma )\geq \sup _{F\in L^2(K,\gamma )\cap Lip(K):\,\int F=1} \left (2T_{\gamma }^F(K)-Var(F)\right )+\frac {1}{n-\mathbb {E}X^2}, \end{equation*} where T γ<#comment/> F ( K ) T_{\gamma }^F(K) is the F −<#comment/> F- torsional rigidity of K K with respect to the Gaussian measure.Moreover, the equality holds if and only if K = R B 2 k ×<#comment/> R n −<#comment/> k K=RB^k_2\times \mathbb {R}^{n-k} for some R > 0 R>0 and k = 1 , …<#comment/> , n k=1,\dots ,n .As a consequence, we get p s ( K , γ<#comment/> ) ≥<#comment/> Q ( E | X | 2 , E ‖<#comment/> X ‖<#comment/> K 4 , E ‖<#comment/> X ‖<#comment/> K 2 , r ( K ) ) , \begin{equation*} p_s(K,\gamma )\geq Q(\mathbb {E}|X|^2, \mathbb {E}\|X\|_K^4, \mathbb {E}\|X\|^2_K, r(K)), \end{equation*} where Q Q is a certain rational function of degree 2 2 , the expectation is taken with respect to the restriction of the Gaussian measure onto K K , ‖<#comment/> ⋅<#comment/> ‖<#comment/> K \|\cdot \|_K is the Minkowski functional of K K , and r ( K ) r(K) is the in-radius of K K . The result follows via a combination of some novel estimates, the L 2 L2 method (previously studied by several authors, notably Kolesnikov and Milman [J. Geom. Anal. 27 (2017), pp. 1680–1702; Amer. J. Math. 140 (2018), pp. 1147–1185;Geometric aspects of functional analysis, Springer, Cham, 2017; Mem. Amer. Math. Soc. 277 (2022), v+78 pp.], Kolesnikov and the author [Adv. Math. 384 (2021), 23 pp.], Hosle, Kolesnikov, and the author [J. Geom. Anal. 31 (2021), pp. 5799–5836], Colesanti [Commun. Contemp. Math. 10 (2008), pp. 765–772], Colesanti, the author, and Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139], Eskenazis and Moschidis [J. Funct. Anal. 280 (2021), 19 pp.]), and the analysis of the Gaussian torsional rigidity. As an auxiliary result on the way to the equality case characterization, we characterize the equality cases in the “convex set version” of the Brascamp-Lieb inequality, and moreover, obtain a quantitative stability version in the case of the standard Gaussian measure; this may be of independent interest. All the equality case characterizations rely on the careful analysis of the smooth case, the stability versions via trace theory, and local approximation arguments. In addition, we provide a non-sharp estimate for a function F F whose composition with γ<#comment/> ( K ) \gamma (K) is concave in the Minkowski sense for all symmetric convex sets. 
    more » « less
  5. Let Γ<#comment/> \Gamma be a countable abelian group. An (abstract) Γ<#comment/> \Gamma -system X \mathrm {X} - that is, an (abstract) probability space equipped with an (abstract) probability-preserving action of Γ<#comment/> \Gamma - is said to be aConze–Lesigne systemif it is equal to its second Host–Kra–Ziegler factor Z 2 ( X ) \mathrm {Z}^2(\mathrm {X}) . The main result of this paper is a structural description of such Conze–Lesigne systems for arbitrary countable abelian Γ<#comment/> \Gamma , namely that they are the inverse limit of translational systems G n / Λ<#comment/> n G_n/\Lambda _n arising from locally compact nilpotent groups G n G_n of nilpotency class 2 2 , quotiented by a lattice Λ<#comment/> n \Lambda _n . Results of this type were previously known when Γ<#comment/> \Gamma was finitely generated, or the product of cyclic groups of prime order. In a companion paper, two of us will apply this structure theorem to obtain an inverse theorem for the Gowers U 3 ( G ) U^3(G) norm for arbitrary finite abelian groups G G
    more » « less