We show that for primes with , the class number of is divisible by . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when , there is always a cusp form of weight and level whose th Fourier coefficient is congruent to modulo a prime above , for all primes . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- extension of .
more »
« less
Newton polygons and resonances of multiple delta-potentials
We prove explicit asymptotics for the location of semiclassical scattering resonances in the setting of -dependent delta-function potentials on . In the cases of two or three delta poles, we are able to show that resonances occur along specific lines of the form More generally, we use the method of Newton polygons to show that resonances near the real axis may only occur along a finite collection of such lines, and we bound the possible number of values of the parameter We present numerical evidence of the existence of more and more possible values of for larger numbers of delta poles.
more »
« less
- PAR ID:
- 10508775
- Publisher / Repository:
- Transactions of the AMS
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society
- ISSN:
- 0002-9947
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Let be a bounded -Reifenberg flat domain, with small enough, possibly with locally infinite surface measure. Assume also that is an NTA (non-tangentially accessible) domain as well and denote by and the respective harmonic measures of and with poles . In this paper we show that the condition that is equivalent to being a chord-arc domain with inner unit normal belonging to .more » « less
-
We show that every Borel graph of subexponential growth has a Borel proper edge-coloring with colors. We deduce this from a stronger result, namely that an -vertex (finite) graph of subexponential growth can be properly edge-colored using colors by an -round deterministic distributed algorithm in theLOCALmodel, where the implied constants in the notation are determined by a bound on the growth rate of .more » « less
-
We formulate a plausible conjecture for the optimal Ehrhard-type inequality for convex symmetric sets with respect to the Gaussian measure. Namely, letting and , we conjecture that the function , given by (with an appropriate choice of a decomposition and coefficients ) satisfies, for all symmetric convex sets and , and any , We explain that this conjecture is “the most optimistic possible”, and is equivalent to the fact that for any symmetric convex set , itsGaussian concavity power is greater than or equal to , for some . We call the sets round -cylinders; they also appear as the conjectured Gaussian isoperimetric minimizers for symmetric sets, see Heilman [Amer. J. Math. 143 (2021), pp. 53–94]. In this manuscript, we make progress towards this question, and show that for any symmetric convex set in , where is the torsional rigidity of with respect to the Gaussian measure.Moreover, the equality holds if and only if for some and .As a consequence, we get where is a certain rational function of degree , the expectation is taken with respect to the restriction of the Gaussian measure onto , is the Minkowski functional of , and is the in-radius of . The result follows via a combination of some novel estimates, the method (previously studied by several authors, notably Kolesnikov and Milman [J. Geom. Anal. 27 (2017), pp. 1680–1702; Amer. J. Math. 140 (2018), pp. 1147–1185;Geometric aspects of functional analysis, Springer, Cham, 2017; Mem. Amer. Math. Soc. 277 (2022), v+78 pp.], Kolesnikov and the author [Adv. Math. 384 (2021), 23 pp.], Hosle, Kolesnikov, and the author [J. Geom. Anal. 31 (2021), pp. 5799–5836], Colesanti [Commun. Contemp. Math. 10 (2008), pp. 765–772], Colesanti, the author, and Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139], Eskenazis and Moschidis [J. Funct. Anal. 280 (2021), 19 pp.]), and the analysis of the Gaussian torsional rigidity. As an auxiliary result on the way to the equality case characterization, we characterize the equality cases in the “convex set version” of the Brascamp-Lieb inequality, and moreover, obtain a quantitative stability version in the case of the standard Gaussian measure; this may be of independent interest. All the equality case characterizations rely on the careful analysis of the smooth case, the stability versions via trace theory, and local approximation arguments. In addition, we provide a non-sharp estimate for a function whose composition with is concave in the Minkowski sense for all symmetric convex sets.more » « less
-
Let be a countable abelian group. An (abstract) -system - that is, an (abstract) probability space equipped with an (abstract) probability-preserving action of - is said to be aConze–Lesigne systemif it is equal to its second Host–Kra–Ziegler factor . The main result of this paper is a structural description of such Conze–Lesigne systems for arbitrary countable abelian , namely that they are the inverse limit of translational systems arising from locally compact nilpotent groups of nilpotency class , quotiented by a lattice . Results of this type were previously known when was finitely generated, or the product of cyclic groups of prime order. In a companion paper, two of us will apply this structure theorem to obtain an inverse theorem for the Gowers norm for arbitrary finite abelian groups .more » « less
An official website of the United States government

