skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: When it comes to lead in water, new biosensing technology can reveal what the eyes cannot see and what the rules do not yet stop
ABSTRACT Deficiencies in knowledge about water quality prevent or obscure progress on a panoply of public health problems globally. Specifically, such lack of information frustrates effective and efficient government regulation to protect the public from contaminated drinking water. In this Practical Paper, we lay out how recent scientific innovations in synthetic biology mean that rapid, at-home tests based on biosensor technology could be used to improve water quality monitoring and regulation, using the example of the U.S. Environmental Protection Agency's Lead and Copper Rule currently under revision. Biosensor tests can be used by non-scientists and the information that biosensor tests generate is relatively cheaper and faster than standard laboratory techniques. As such, they have the potential to make it possible to increase the number and frequency of samples tested. This, in turn, could facilitate more accurate compliance monitoring, justify more protective substantive standards, and more efficiently identify infrastructure priorities. Biosensors can also empower historically underrepresented communities by facilitating the visibility of inequities in lead exposure, help utilities to ensure safe water delivery, and guide policy for identifying and replacing lead-bearing water infrastructure, thereby improving public health. As the technology matures, biosensors have great potential to reveal water quality issues, thereby reducing public health burdens.  more » « less
Award ID(s):
2319427
PAR ID:
10508819
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.2166
Date Published:
Journal Name:
AQUA — Water Infrastructure, Ecosystems and Society
Volume:
73
Issue:
6
ISSN:
2709-8028
Format(s):
Medium: X Size: p. 1205-1210
Size(s):
p. 1205-1210
Sponsoring Org:
National Science Foundation
More Like this
  1. Feline urine provides valuable insights into an animal's well-being. However, professional veterinary urine analysis can be invasive, costly, and infrequent. Electrochemical biosensors, widely used in medical diagnosis, environmental monitoring, food quality control, and drug discovery, offer a promising solution for sensing analytes in feline urine. This paper introduces the "Feline Biofluids IoT Hub" concept that aims at making previously inaccessible biological data in pets' fluids visible and integrates biofluid sensing with an Internet of Things (IoT) system to enhace comprehensive animal health monitoring. To implement that concept, our project GluCAT includes a biosensing litter box and an activity sensing mat to facilitate the care of diabetic cats. Chronoamperometic data is capture from the electrochemical biosensor using a potentiostat and send to a database via Wi-Fi, providing data visualization through a mobile application. We present electrochemical biosensor tests across five glucose levels. We compare results from feline urine samples with laboratory-grade tests. Furthermore, we share insights from a real-world user study involving a cat interacting with GluCAT for over 50 hours. We envision our project enabling the monitoring of various illnesses by detecting analytes like pH, sodium, and glucose in feline urine using electrochemical biosensors, complemented by data from pet-oriented IoT devices measuring water intake, activity, weight, and food consumption. 
    more » « less
  2. Abstract More than half of all Americans suffer from chronic diseases, the leading causes of death and disability. However, prompt treatment of chronic diseases can lead to better patient outcomes and a reduced burden on the healthcare system. This highlights the urgent need for electrochemical (EC) sensors that provide non‐invasive, real‐time monitoring of disease‐indicating biomarkers. Due to their high sensitivity, high selectivity, and cost‐effectiveness, EC biosensors have recently shown tremendous promise for individualized health monitoring. This review explains the working principles of EC biosensors. It summarizes the recent advances and improvements of EC biosensors for detecting biomarkers in different biofluids, including tears, saliva, breath, urine, and sweat. Through a comprehensive overview of EC biosensor technologies, this article is expected to aid the development of flexible and wearable EC biosensing systems that have the potential to provide continuous, long‐term health monitoring for both clinical and at‐home use. 
    more » « less
  3. Feline urine provides valuable information on an animal’s wellbeing, but professional veterinary collection and analysis of urine samples can be intrusive, costly, and infrequent. Electrochemical biosensors recognize biological elements such as pH, glucose and sodium, and have numerous applications, including in medical diagnosis, environmental monitoring, food quality control and drug discovery. This paper presents cirCAT: PURRtentio, a litter box system that uses a electrochemical biosensor to monitor analytes in feline urine. We provide the implementation process of the system that consists of a DIY three-electrode biosensor, a potentiostat, a microcontroller, a ToF sensor and a mobile application. A rinsing mechanism is also included to extend the lifespan of the sensors. The system was tested using three separate electrochemistry tests to ensure accuracy, reliability, and applicability. We prepared and compared electrochemical biosensors with different conductive materials for Do-It-Yourself (DIY) electrodes. The second test compared PURRtentio against an industry-grade potentiostat. The third test compared our system against current veterinary standards for chemical analysis using feline’s urine samples. Additionally, we conducted a case study with a cat using PURRtentio for 72 hours. Finally, with results from these research and another series of interviews we did with veterinarian experts, we provide implications and future directions of this technology. PURRtentio presents an innovative and non-invasive means to consistently monitor chemistry elements in feline urine, potentially allowing for early detection and management of cat’s health conditions. 
    more » « less
  4. Industrialization and failing infrastructure have led to a growing number of irreversible health conditions resulting from chronic lead exposure. While state-of- the-art analytical chemistry methods provide accurate and sensitive detection of lead, they are too slow, expensive, and centralized to be accessible to many. Cell-free biosensors based on allosteric transcription factors (aTFs) can address the need for accessible, on-demand lead detection at the point of use. However, known aTFs, such as PbrR, are unable to detect lead at concentrations regulated by the Environmental Protection Agency (24−72 nM). Here, we develop a rapid cell-free platform for engineering aTF biosensors with improved sensitivity, selectivity, and dynamic range characteristics. We apply this platform to engineer PbrR mutants for a shift in limit of detection from 10 μM to 50 nM lead and demonstrate use of PbrR as a cell-free biosensor. We envision that our workflow could be applied to engineer any aTF. 
    more » « less
  5. Abstract Variable water quality within buildings is of increasing concern due to public health impacts (e.g., lead,Legionella pneumophila,Naegleria fowleri, disinfection byproducts). Advances in data acquisition and analytics provide the opportunity to monitor real‐time building‐wide water quality variability. Accordingly, the goal of this research was to create a water quality sensor platform including data acquisition, storage, and mining methods able to monitor, and ultimately improve, water quality within buildings. The platform was used to monitor water temperature, pH, conductivity, oxidation–reduction potential, dissolved oxygen, and chlorine using sensors only. Other building data infrastructure, specifically Wi‐Fi logins by occupants, were used to approximate activity rates and associated water use. An advanced machine‐learning technique, gradient boosting machines, predicted the chlorine residuals throughout the building plumbing network better than multivariate linear regression models. Finally, the implications of water quality monitoring on costs, scalability, reliability, human dimensions, regulatory compliance, and future green building designs are considered. 
    more » « less