skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The influence of Precambrian fabric reactivation on formation of the Laramide White Gates monocline, Black Hills, South Dakota
The Black Hills, in western South Dakota and eastern Wyoming, were formed by Laramide orogeny deformation that was focused on a Precambrian suture along the eastern margin of the Wyoming Craton. Uplift of the Black Hills primarily took place by the development of monoclines on the eastern and western flanks of the Black Hills: west-vergent monoclines in the west and east-vergent monoclines in the east. Although the exhumed metamorphic core of the Black Hills contains abundant Precambrian structures that could have been reactivated during the Laramide orogeny, it remains unclear if the monoclines formed above reactivated basement structures. We present new balanced cross section modeling focused on the White Gates monocline along the eastern margin of the Black Hills to test whether it records reactivation of Precambrian basement structures. To better determine the geometry of the White Gates Monocline, we collected 22 bedding attitude measurements from the upper Deadwood and the Pahasapa formations along an 1,723-meter-long transect across the strike of the fold axis. We forward modeled monocline development related to slip on blind thrusts in three dip orientations: 30° (Andersonian thrust fault), 45° (maximum resolved shear stress), and 70° (orientation of nearby basement fabrics). Preliminary model results reveal that the 70° fault dip angle produces fold geometries most consistent with the geometry of the White Gate monocline. This result suggests that the reactivation of Precambrian fabrics during the Laramide orogeny influenced the formation of the White Gates monocline. Elsewhere in the Precambrian core of the Black Hills, conjugate thrust faults inferred to be Laramide age clearly cross-cut basement fabrics, which suggests that the role of structural reactivation in Laramide deformation varies spatially throughout the Black Hills.  more » « less
Award ID(s):
2050697
PAR ID:
10508869
Author(s) / Creator(s):
;
Publisher / Repository:
Geological Society of America Abstracts with Programs
Date Published:
Volume:
56
Issue:
4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Black Hills of western South Dakota and eastern Wyoming were uplifted as a result of the Laramide orogeny occupying the suture between the Wyoming and Superior Cratons. Two exposures of Archean orthogneiss, the Bear Mountain Terrane and the Little Elk Granite (LEG), represent the oldest rocks exposed in the Precambrian core of the Black Hills and offer the opportunity to study tectonic processes involved in forming the Laurentian craton. This study presents new structural field data (orientation of foliation planes, stretching lineations, and cross cutting relations; n=270 measurements) along a ~5 km transect that record the deformation history of the LEG. Two dominant fabric types were found in outcrop: augen gneiss (type 1) and mylonitized granite (type 2). The type 1 fabric is characterized by 1-5 cm K-feldspar crystals aligned to give top-down or “normal” sense of shear, small-scale folding of the fabric, and is cross-cut by aplite dikes in multiple sites. The type 2 mylonitic fabric overprints the type 1 fabric and intensifies from east to west along the transect, resulting in a loss of the type 1 fabric. The stretching lineation in the type 2 fabric plunges down dip with shear sense indicators observable in outcrop. Both fabrics display a NW/SE striking and ~70°SW dipping foliation at every site. Yet, subtle folding of the type 1 fabric at some sites causes it to be crosscut by the type 2 fabric. Based on the high-temperature deformation features in the type 1 fabric and the cross-cutting relationship with aplite dikes, we interpret that the type 1 fabric formed during emplacement of the granite. Assuming the LEG has not experienced significant tilting since emplacement, the top-down shear sense recorded by alignment of K-feldspar may suggest emplacement of the LEG into an extensional setting. Our observations of the type 2 fabric, including down-plunge stretching lineations and opposing shear sense indicators support previous interpretations of transpressional deformation within the LEG and metasedimentary rocks sheared along its western margin. With the new data describing shear zone kinematics in the LEG, we interpret that the type 1 fabric formed prior to suturing of the Wyoming and Superior Cratons and the type 2 fabric formed during craton suturing. 
    more » « less
  2. Abstract The Laramide province is characterized by foreland basin partitioning through the growth of basement arches. Although variable along the western U.S. margin, the general consensus is initiation of this structural style by the early Campanian (~80 Ma). This has been linked to flat‐slab subduction beneath western North America, but the extent and cause for a flat slab remain debated, invoking the need for better constraints on the regional variations in timing of Laramide deformation. We present new conglomerate clast composition, sandstone petrographic, and detrital zircon U‐Pb geochronologic data from the Upper Cretaceous Beaverhead Group in southwestern Montana that suggest a pre‐Campanian history of basement‐involved deformation. During the early stages of deposition (~88–83 Ma), two separate depositional systems derived sediment from the Lemhi subbasin and distal thrust sheets to the west as well as Paleozoic strata eroding off the exhuming Blacktail‐Snowcrest arch to the east. Our data provide the first conclusive evidence for the longitudinal transport of gravel via Cordilleran paleorivers connecting sediment sources in east central Idaho to depocenters in southwestern Montana and northwestern Wyoming. Furthermore, erosion of Paleozoic strata by this time requires that the Blacktail‐Snowcrest arch was exhuming prior to ~88 Ma in order to remove the Mesozoic overburden. Later (~73–66 Ma) sediment flux was entirely from the foreland‐propagating fold‐thrust belt to the west. These results suggest that Laramide‐style deformation in southwestern Montana preceded initiation elsewhere along the margin, requiring revision of existing models for Laramide tectonism. 
    more » « less
  3. Abstract The Wyoming Craton underwent tectonic modifications during the Laramide Orogeny, which resulted in a series of basement‐cored uplifts that built the modern‐day Rockies. The easternmost surface expression of this orogeny ‐ the Black Hills in South Dakota ‐ is separated from the main trend of the Rocky Mountains by the southern half of the Powder River Basin, which we refer to as the Thunder Basin. Seismic tomography studies reveal a high‐velocity anomaly which extends to a depth of ∼300 km below the basin and may represent a lithospheric keel. We constrain seismic attenuation to investigate the hypothesis that variations in lithospheric thickness resulted in the localization of stress and therefore deformation. We utilize data from the CIELO seismic array, a linear array that extends from east of the Black Hills across the Thunder Basin and westward into the Owl Creek Mountains, the BASE FlexArray deployment centered on the Bighorn Mountains, and the EarthScope Transportable Array. We analyze seismograms from deep teleseismic events and compare waveforms in the time‐domain to characterize lateral variations in attenuation. Bayesian inversion results reveal high attenuation in the Black Hills and Bighorn Mountains and low attenuation in the Thunder and Bighorn Basins. Scattering is rejected as a confounding factor because of a strong anticorrelation between attenuation and the amplitude ofPwave codas. The results support the hypothesis that lateral variations in lithospheric strength, as evidenced by our seismic attenuation measurements, played an important role in the localization of deformation and orogenesis during the Laramide Orogeny. 
    more » « less
  4. The Late Cretaceous arc flare-up event from 90 to 70 in the Transverse Ranges of the Southern California Batholith was temporally and spatially associated with the development of a large contractional shear system that includes discontinuous segments of the Tumamait shear zone (Mt. Pinos), the Alamo Mountain-Piru Creek shear zone, the Black Belt shear zone (Cucamonga terrane), and the Eastern Peninsular Ranges shear zone. The age and kinematics of these shear zones inform the tectonic setting of the continental arc in Southern California during the beginning of the Laramide orogeny and during postulated large-magnitude dextral translations along the margin (the Baja-BC hypothesis). The Mt. Pinos sector of the Southern California Batholith preserves the intra-arc, transpressional Tumamait shear zone and the ductile-to-brittle Sawmill thrust, both of which record Late Cretaceous deformation. The batholith and shear zone are hosted by Mesoproterozoic biotite gneisses and migmatites (1750-1760 Ma), Neoproterozoic biotite granites (660 Ma), Permo-Triassic granitic gneisses and amphibolite (260-250 Ma), and Late Jurassic granites and gneisses (160-140 Ma). Late Cretaceous rocks are variably deformed and include porphyritic granodiorite gneisses and peraluminous granites emplaced at 86 to 70 Ma. Mylonites of the Tumamait shear zone affect all rocks in the area and generally strike NW-SE and dip moderately to the NE and SW. Mineral stretching lineations plunge shallowly to the SE. Mylonitic fabrics are folded into a regional, SE-plunging synform that results in alternating bands of sinistral and dextral shear fabrics. Syn-kinematic titanites from 5 mylonitic samples give a 720-700°C temperature range, and lower-intercept 206Pb/238U dates of 77.0 Ma, 76.8 Ma, 75.1 Ma, 74.2 Ma, and 74.0 Ma. Subsequent folding of the mylonite is linked to N-directed motion on the Sawmill thrust. 40Ar-39Ar thermochronology ages of 67-66 Ma and onlapping Eocene shales indicate Latest Cretaceous activity on the thrust, prior to Eocene arc collapse. Based on the age of the Tumamait shear zone, we speculate that it is related to sinistral deformation observed in the nearby Alamo Mountain-Piru Creek and the Black Belt shear zones. We attribute the younger Sawmill thrust to collision of the Hess oceanic plateau with the Southern California Batholith after 70 Ma. 
    more » « less
  5. In the eastern San Gabriel Mountains, located north of Los Angeles, California, the late Cenozoic Cucamonga thrust has uplifted and exposed the lower crustal root of the Mesozoic Southern California Batholith. We use structural data and U-Pb zircon analyses from these exposures to document changes in the style of intra-arc deformation in the batholith as the Laramide Orogeny began during the Late Cretaceous (at or after ~90 Ma). At the base of the uplifted section, a 4 km-thick package of metasedimentary rock records the intrusion of amphibolite, charnokite and other dikes of probable Jurassic to Early Cretaceous age. The oldest gneissic fabrics (S1, S2) in these rocks record Early Cretaceous partial melting, granulite-facies metamorphism, and top-to-the-S and -SE (present day reference frame) reverse motion on surfaces that dip moderately to the N and NW. These structures define a D1/D2 thrust system that formed on the trench side of the arc and was active during the Early Cretaceous. From 89-77 Ma this thrust system was reactivated by oblique-slip shear zones (D3) that record sinistral-reverse displacements on N- and NW-dipping surfaces. The timing of deformation in these latter shear zones is indicated by the age of 90-85 Ma syn-kinematic intrusions of the Tonalite of San Sevaine Lookout. After emplacement of the tonalite, the lower crustal section was deformed by a series of S-vergent, overturned folds. The emplacement of granodioritic dikes into the axial planes of some of these folds suggests that they formed during the latest stages of D3 transpression and tonalite emplacement. Superimposed on all these structures are a series of ductile-to-brittle thrust faults and folds that appear to be related to formation of the late Cenozoic Cucamonga thrust fault at the southern edge of the San Gabriel mountains. These data show that the Southern California Batholith in the San Gabriel Mountains records a tectonic transition from Early Cretaceous reverse faulting and crustal imbrication on the trench side of the arc to Late Cretaceous transpression and oblique sinistral-reverse deformation during a magmatic flare-up from 89-77 Ma. Another major episode of shortening and crustal imbrication occurred during the late Cenozoic when the Cucamonga thrust uplifted the San Gabriel block. 
    more » « less