skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterizing the Ellsworth Formation of the Michigan Basin using lithostratigraphy and chemostratigraphy
The Ellsworth Formation is a Late Devonian gray-green silty shale found in the Michigan Basin. The relationship between the Ellsworth Formation and the underlying/interfingering Antrim Formation black shale is variable within the literature, and the delta that delivered this sediment to the basin is poorly constrained. This study aims to better understand the lithostratigraphic and chemostratigraphic variation of the Ellsworth among two drill cores: one located on the basin margin and the other more basinal. This work will help constrain the stratigraphic and paleoenvironmental aspects of the Ellsworth in different parts of the basin, providing a better understanding of Ellsworth delta construction. Elemental (pXRF) and mineralogical (XRD) analyses demonstrate a distinct difference between the cores. The Ellsworth Formation on the edge of the basin contains larger amounts of K-feldspar, quartz, and dolomite. In contrast, more basinal settings contained higher amounts of clay minerals as well as organic matter. Additionally, a high-resolution lithostratigraphic study of the basin-margin core was undertaken. Generalized linear models were used to measure lithologic trends throughout the Ellsworth Formation in this core, ultimately showing a coarsening upward sequence overprinting cyclical deposition of detrital sediments. Furthermore, sub-millimeter oscillating grain size variations were observed in cuttings at a microscopic scale. Together, these observations indicate that the sediment source for the Ellsworth Formation delta complex was likely to the modern day north-northwest, as suggested by previous studies, and that the delta deposits transitioned from shallower water feldspathic silty shale to organic-rich clay-dominated strata in basinal settings. Future work should focus on deciphering the causes of cyclicity observed at microscopic, centimeter, and decimeter scale. Ultimately, this study shows that there are distinct chemical and lithologic differences between the basin edge and central basin portions of the Ellsworth Formation, and these differences can be used to further understand the stratigraphy and paleoenvironmental history of the Michigan Basin.  more » « less
Award ID(s):
2050697
PAR ID:
10508876
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Geological Society of America Abstracts with Programs
Date Published:
Volume:
56
Issue:
3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study utilizes the magnetic susceptibility (MS) of sedimentary strata to correlate the Late Devonian Antrim Formation black shale and calcareous mudstone within the Michigan Basin as well as the Antrim with previously published MS profiles from contemporaneous, shale-dominated strata from the Illinois Basin. MS can be used as a proxy for changes in material composition, which is linked to paleoclimate-controlled sediment fluxes and depositional environments. In the Michigan Basin, MS profiles through the basin-margin State Chester Welch 18 and the more basinal Krocker 1-17 cores show that MS patterns correspond to lithostratigraphic units. For some of these units the MS patterns are similar among the cores, though not for all units. Preliminary interpretation is that MS patterns are a result of proximity to sediment source (Acadian Orogeny versus Transcontinental Arch) as well as intrabasinal early diagenetic processes (pyrite). Furthermore, the lithostratigraphic units in these cores may not be chronostratigraphically equivalent. This study also compares the Michigan Basin MS basinal profile (Krocker 1-17 core) with previously published data from the “Bullitt County Core” from Kentucky, in the southern Illinois Basin. Within a biostratigraphic framework, the Michigan and Illinois Basin cores appear to show similar MS patterns. This is possibly because sediment input to these two locations is primarily sourced from the Acadian Orogeny, and the depositional environment and therefore early diagenetic processes, are similar. Future work will combine mineralogical analysis with the MS profiles to decipher the source of magnetic susceptibility, currently hypothesized to be driven by ilmenite concentration. 
    more » « less
  2. The “Squaw Bay Formation,” a middle Devonian mixed carbonate-clastic unit located in the Michigan basin, was named almost 100 years ago by Warthin and Cooper (1935) for a single, poorly exposed outcropping of condensed strata. Since then the stratigraphic term has been used inconsistently in the subsurface where the unit is stratigraphically expanded, but should also be revised because it is a derogatory term for Native American Women. The goal of this study is to aid in the renaming process for this formation by determining its variability and defining boundaries. To accomplish this, the current research combines lithostratigraphy, paleoecology, and geochemical analyses of the Krocker 1-17, State Chester Welch 18, and Paxton Quarry cores to provide the background information needed to revise the formation. The “Squaw Bay Formation” in core is composed of predominantly argillaceous limestone and calcareous shale and is characterized by a crinoid and brachiopod fauna. Further lithologic analysis found that there are three main facies common in the studied cores; black shale with frequent pyrite nodules and silt laminae, calcareous fossiliferous shale, and a highly bioturbated calcareous shale with few fossils and pyrite nodules. The lower “Squaw Bay Formation” also contains zones of concentrated fossil debris, especially near the contact with the Traverse Limestone which is primarily a pyritized hardground. The studied formation also has an increasing black shale content up-section and a transitional contact with the overlying Antrim Shale. Future analysis of magnetic susceptibility, pXRF, and total organic carbon data will further illuminate the variability within the formation and characteristics of its boundaries with other stratigraphic units. Ultimately, the combination of lithostratigraphic, paleoecologic, and geochemical analysis of the Krocker 1-17, State Chester Welch 18, and Paxton Quarry cores will not only facilitate a better understanding of the “Squaw Bay Formation,” but also contribute to the process of revising and renaming the unit. 
    more » « less
  3. The Middle to Upper Devonian is distinguished by global biotic events attributed to marine anoxia (black shale) and perturbations in the carbon cycle. While previous studies had documented these events in the North American Appalachian Basin, less attention has been directed toward discerning analogous global biotic occurrences within the neighboring Michigan Basin. This investigation aims to reconstruct the organic carbon isotopic composition of Middle to Upper Devonian sediments within the Antrim Shale, from the Krocker 1-17 and State Chester Welch 18 drill cores located in the north-central Michigan Basin. Since black shale organic matter (OM) is a combination of marine and terrestrial sources, the first step is to utilize elemental proxies for sedimentation to understand terrestrial OM input to the basin. Elemental analysis was performed on powdered core samples at approximately three-foot intervals across the (oldest to youngest) Norwood, Paxton, and Lachine members of the Antrim Shale. Initial pXRF analysis shows similar trends in sedimentation rate proxies between the two core locations, suggesting that basin-fill dynamics are spatially consistent. In the Norwood, Si%, Si/Al, and K% mostly correspond suggesting predominantly clay mineral deposition, though an anomalously high interval of Si%, Si/Al, and TOC (and low K%) is interpreted as high paleoproductivity and biogenic silica production (radiolarians). In the Paxton, all elemental proxies for sedimentation are relatively consistent through time, indicating minimal detrital flux changes. In the Lachine, the overall trend of increasing Si% and Si/Al and corresponding decreasing K and TOC suggests increased detrital input through time. These trends provide the necessary baseline for future work interpreting organic carbon isotopic data. A detailed understanding of local detrital fluxes into the Michigan Basin and potential terrestrial organic carbon input to marine settings is necessary to place the Michigan Basin carbon isotopic profile within the global framework. This study will provide valuable insights into deciphering global events within the stratigraphic succession of the Michigan Basin. The anticipated outcome is an enhanced understanding of the localized manifestations of Middle to Upper Devonian global events. 
    more » « less
  4. International Ocean Discovery Program (IODP) Expedition 374 recovered high-quality cores at five sites on the Ross Sea continental shelf, slope, and rise to improve the understanding of the sensitivity of the Antarctic ice sheets (and particularly the West Antarctic Ice Sheet) to past climatic and oceanic conditions, especially during a warmer-than-present climate. This report summarizes the petrology of gravel-sized clasts from Site U1521, which is located in the Pennell Basin. The recovered core spans from the early Miocene to the Pleistocene, and it is constituted by cycles of glaciomarine sediments that indicate different paleoenvironmental conditions. Granule- to cobble-sized clasts present in the sedimentary sequence have been counted and grouped into seven different lithologies based on macroscopic and microscopic recognition. The most common lithologic group is represented by low-grade metasedimentary rocks such as metasandstone, metasiltstone, and metagraywacke. Granitoid rocks (mainly monzogranite to granodiorite) are the second most represented group. Dolerites and volcanic rocks are less frequent and are abundant only in some lithostratigraphic units. Chemical analysis of biotite from seven selected metamorphic and intrusive pebbles are also provided. 
    more » « less
  5. We report semiquantitative elemental data from X-ray fluorescence (XRF) scanning of Site U1558 sediment cores drilled during International Ocean Discovery Program Expeditions 390C and 393. These expeditions, together with Expeditions 395E and 390, form the South Atlantic Transect, which collected sediment and basement cores from the western flank of the southern Mid-Atlantic Ridge. XRF scanning of the continuous splice of Site U1558, using Holes U1558A and U1558F, was conducted at three acceleration voltages to capture a range of major, minor, and trace elements. At Site U1558, positive correlations exist between terrigenous-sourced elements (Al, Si, Ti, and Fe) and a negative correlation exists between the terrigenous-sourced elements and Ca. XRF geochemistry is correlated with lithologic changes, most notably at the boundary of Lithologic Units I and II, where Unit I is brown and reddish brown nannofossil-rich clay and Unit II is pink, pinkish white, pinkish gray, and light brown nannofossil ooze and chalk with varying amounts of clay and foraminifera. Peaks in XRF data align with the boundaries of Lithologic Subunits IIA and IIB and Subunits IIB and IIC. 
    more » « less