skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities
We study the optimal control problem in stochastic queueing networks with a set of job dispatchers connected to a set of parallel servers with queues. Jobs arrive at the dispatchers and get routed to the servers following some routing policy. The arrival processes of jobs and the service processes of servers are stochastic with unknown arrival rates and service rates. Upon the completion of each job from dispatcherunat serversm, a random utility whose mean is unknown is obtained. We seek to design a control policy that makes routing decisions at the dispatchers and scheduling decisions at the servers to maximize the total utility obtained by the end of a finite time horizonT. The performance of policies is measured by regret, which is defined as the difference in total expected utility with respect to the optimal dynamic policy that has access to arrival rates, service rates and underlying utilities. We first show that the expected utility of the optimal dynamic policy is upper bounded byTtimes the solution to a static linear program, where the optimization variables correspond to rates of jobs from dispatchers to servers and the feasibility region is parameterized by arrival rates and service rates. We next propose a policy for the optimal control problem that is an integration of a learning algorithm and a control policy. The learning algorithm seeks to learn the optimal extreme point solution to the static linear program based on the information available in the optimal control problem. The control policy, a mixture of priority-based and Joint-the-Shortest-Queue routing at the dispatchers and priority-based scheduling at the servers, makes decisions based on the graphical structure induced by the extreme point solutions provided by the learning algorithm. We prove that our policy achieves logarithmic regret whereas application of existing techniques to the optimal control problem would lead to Ω(√T)-regret. The theoretical analysis is further complemented with simulations to evaluate the empirical performance of our policy.  more » « less
Award ID(s):
2148128
PAR ID:
10508907
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Volume:
6
Issue:
3
ISSN:
2476-1249
Page Range / eLocation ID:
1 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In multi-server queueing systems where there is no central queue holding all incoming jobs, job dispatching policies are used to assign incoming jobs to the queue at one of the servers. Classic job dispatching policies such as join-the-shortest-queue and shortest expected delay assume that the service rates and queue lengths of the servers are known to the dispatcher. In this work, we tackle the problem of job dispatching without the knowledge of service rates and queue lengths, where the dispatcher can only obtain noisy estimates of the service rates by observing job departures. This problem presents a novel exploration-exploitation trade-off between sending jobs to all the servers to estimate their service rates, and exploiting the currently known fastest servers to minimize the expected queueing delay. We propose a bandit-based exploration policy that learns the service rates from observed job departures. Unlike the standard multi-armed bandit problem where only one out of a finite set of actions is optimal, here the optimal policy requires identifying the optimal fraction of incoming jobs to be sent to each server. We present a regret analysis and simulations to demonstrate the effectiveness of the proposed bandit-based exploration policy. 
    more » « less
  2. We consider a distributed server system consisting of a large number of servers, each with limited capacity on multiple resources (CPU, memory, etc.). Jobs with different rewards arrive over time and require certain amounts of resources for the duration of their service. When a job arrives, the system must decide whether to admit it or reject it, and if admitted, in which server to schedule it. The objective is to maximize the expected total reward received by the system. This problem is motivated by control of cloud computing clusters, in which jobs are requests for virtual machines (VMs) or containers that reserve resources for various services, and rewards represent service priority of requests or price paid per time unit of service. We study this problem in an asymptotic regime where the number of servers and jobs’ arrival rates scale by a factor L, as L becomes large. We propose a resource reservation policy that asymptotically achieves at least 1/2, and under certain monotone property on jobs’ rewards and resources, at least [Formula: see text] of the optimal expected reward. The policy automatically scales the number of VM slots for each job type as the demand changes and decides in which servers the slots should be created in advance, without the knowledge of traffic rates. 
    more » « less
  3. In modern computing systems, jobs' resource requirements often vary over time. Accounting for this temporal variability during job scheduling is essential for meeting performance goals. However, theoretical understanding on how to schedule jobs with time-varying resource requirements is limited. Motivated by this gap, we propose a new setting of the stochastic bin-packing problem in service systems that allows for time-varying job resource requirements, also referred to as 'item sizes' in traditional bin-packing terms. In this setting, a job or 'item' must be dispatched to a server or 'bin' upon arrival. Its resource requirement may vary over time while in service, following a Markovian assumption. Once the job's service is complete, it departs from the system. Our goal is to minimize the expected number of active servers, or 'non-empty bins', in steady state. Under our problem formulation, we develop a job dispatch policy, named Join-Reqesting-Server (JRS). Broadly, JRS lets each server independently evaluate its current job configuration and decide whether to accept additional jobs, balancing the competing objectives of maximizing throughput and minimizing the risk of resource capacity overruns. The JRS dispatcher then utilizes these individual evaluations to decide which server to dispatch each arriving job to. The theoretical performance guarantee of JRS is in the asymptotic regime where the job arrival rate scales large linearly with respect to a scaling factor r. We show that JRS achieves an additive optimality gap of O(√r) in the objective value, where the optimal objective value is Θ(r). When specialized to constant job resource requirements, our result improves upon the state-of-the-art o(r) optimality gap. Our technical approach highlights a novel policy conversion framework that reduces the policy design problem into a single-server problem. 
    more » « less
  4. Multiserver-job systems, where jobs require concurrent service at many servers, occur widely in practice. Essentially all of the theoretical work on multiserver-job systems focuses on maximizing utilization, with almost nothing known about mean response time. In simpler settings, such as various known-size single-server-job settings, minimizing mean response time is merely a matter of prioritizing small jobs. However, for the multiserver-job system, prioritizing small jobs is not enough, because we must also ensure servers are not unnecessarily left idle. Thus, minimizing mean response time requires prioritizing small jobs while simultaneously maximizing throughput. Our question is how to achieve these joint objectives. We devise the ServerFilling-SRPT scheduling policy, which is the first policy to minimize mean response time in the multiserver-job model in the heavy traffic limit. In addition to proving this heavy-traffic result, we present empirical evidence that ServerFilling-SRPT outperforms all existing scheduling policies for all loads, with improvements by orders of magnitude at higher loads. Because ServerFilling-SRPT requires knowing job sizes, we also define the ServerFilling-Gittins policy, which is optimal when sizes are unknown or partially known. 
    more » « less
  5. We study the problem of scheduling jobs in a queueing system, specifically an M/G/1 with light-tailed job sizes, to asymptotically optimize the response time tail. This means scheduling to make P[T > t], the chance a job's response time exceeds t, decay as quickly as possible in the t \to \infty limit. For some time, the best known policy was First-Come First-Served (FCFS), which has an asymptotically exponential tail: P[T > t] ~ C e^-γ t . FCFS achieves the optimal decay rate γ, but its tail constant C is suboptimal. Only recently have policies that improve upon FCFS's tail constant been discovered. But it is unknown what the optimal tail constant is, let alone what policy might achieve it. In this paper, we derive a closed-form expression for the optimal tail constant C, and we introduce γ-Boost, a new policy that achieves this optimal tail constant. Roughly speaking, γ-Boost operates similarly to FCFS, but it pretends that small jobs arrive earlier than their true arrival times. This significantly reduces the response time of small jobs without unduly delaying large jobs, improving upon FCFS's tail constant by up to 50% with only moderate job size variability, with even larger improvements for higher variability. While these results are for systems with full job size information, we also introduce and analyze a version of γ-Boost that works in settings with partial job size information, showing it too achieves significant gains over FCFS. Finally, we show via simulation that γ-Boost has excellent practical performance. 
    more » « less