- Award ID(s):
- 2020275
- PAR ID:
- 10509020
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review C
- Edition / Version:
- 1
- Volume:
- 108
- Issue:
- 3
- ISSN:
- 2469-9985
- Format(s):
- Medium: X Other: pdf
- Sponsoring Org:
- National Science Foundation
More Like this
-
A bstract We evaluate the statistical significance of the 3+1 sterile-neutrino hypothesis using ν e and $$ \overline{\nu} $$ ν ¯ e disappearance data from reactor, solar and gallium radioactive source experiments. Concerning the latter, we investigate the implications of the recent BEST results. For reactor data we focus on relative measurements independent of flux predictions. For the problem at hand, the usual χ 2 -approximation to hypothesis testing based on Wilks’ theorem has been shown in the literature to be inaccurate. We therefore present results based on Monte Carlo simulations, and find that this typically reduces the significance by roughly 1 σ with respect to the naïve expectation. We find no significant indication in favor of sterile-neutrino oscillations from reactor data. On the other hand, gallium data (dominated by the BEST result) show more than 5 σ of evidence supporting the sterile-neutrino hypothesis, favoring oscillation parameters in agreement with constraints from reactor data. This explanation is, however, in significant tension (∼ 3 σ ) with solar neutrino experiments. In order to assess the robustness of the signal for gallium experiments we present a discussion of the impact of cross-section uncertainties on the results.more » « less
-
Abstract A thorough understanding of neutrino–nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino–nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments—both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program—and could well be the difference between achieving or missing discovery level precision. To this end, electron–nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino–nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino–nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs.
-
Elastic neutrino scattering on electrons is a precisely known purely leptonic process that provides a standard candle for measuring neutrino flux in conventional neutrino beams. Using a total sample of 810 neutrino-electron scatters after background subtraction, the measurement reduces the normalization uncertainty on the νμ NuMI beam flux between 2 and 20 GeV from 7.6 to 3.9%. This is the most precise measurement of neutrino-electron scattering to date, will reduce uncertainties on MINERνA’s absolute cross section measurements, and demonstrates a technique that can be used in future neutrino beams such as long baseline neutrino facility.more » « less
-
Abstract Motivated by recent visits from interstellar comets, along with continuing discoveries of minor bodies in orbit of the Sun, this paper studies the capture of objects on initially hyperbolic orbits by our solar system. Using an ensemble of ∼500 million numerical experiments, this work generalizes previous treatments by calculating the capture cross section as a function of asymptotic speed. The resulting velocity-dependent cross section can then be convolved with any distribution of relative speeds to determine the capture rate for incoming bodies. This convolution is carried out for the usual Maxwellian distribution, as well as the velocity distribution expected for rocky debris ejected from planetary systems. We also construct an analytic description of the capture process that provides an explanation for the functional form of the capture cross section in both the high- and low-velocity limits.
-
The first results of the study of high-energy electron neutrino (𝜈𝑒) and muon neutrino (𝜈𝜇) charged-current interactions in the FASER𝜈 emulsion-tungsten detector of the FASER experiment at the LHC are presented. A 128.8 kg subset of the FASER𝜈 volume was analyzed after exposure to 9.5 fb−1 of √𝑠=13.6 TeV 𝑝𝑝 data. Four (eight) 𝜈𝑒 (𝜈𝜇) interaction candidate events are observed with a statistical significance of 5.2𝜎 (5.7𝜎). This is the first direct observation of 𝜈𝑒 interactions at a particle collider and includes the highest-energy 𝜈𝑒 and 𝜈𝜇 ever detected from an artificial source. The interaction cross section per nucleon 𝜎/𝐸𝜈 is measured over an energy range of 560–1740 GeV (520–1760 GeV) for 𝜈𝑒 (𝜈𝜇) to be (1.2+0.8 −0.7)×10−38 cm2 GeV−1 [(0.5±0.2)×10−38 cm2 GeV−1], consistent with standard model predictions. These are the first measurements of neutrino interaction cross sections in those energy ranges.more » « less