Many theoretical treatments of foraging use energy as currency, with carbohydrates and lipids considered interchangeable as energy sources. However, herbivores must often synthesize lipids from carbohydrates since they are in short supply in plants, theoretically increasing the cost of growth. We tested whether a generalist insect herbivore (Locusta migratoria) can improve its growth efficiency by consuming lipids, and whether these locusts have a preferred caloric intake ratio of carbohydrate to lipid (C : L). Locusts fed pairs of isocaloric, isoprotein diets differing in C and L consistently selected a 2C : 1L target. Locusts reared on isocaloric, isoprotein 3C : 0L diets attained similar final body masses and lipid contents to locusts fed the 2C : 1L diet, but they ate more and had a ~12% higher metabolic rate, indicating an energetic cost for lipogenesis. These results demonstrate that some animals can selectively regulate carbohydrate-to-lipid intake and that consumption of dietary lipids can improve growth efficiency.
more »
« less
How Nutrients Mediate the Impacts of Global Change on Locust Outbreaks
Locusts are grasshoppers that can migrate en masse and devastate food security. Plant nutrient content is a key variable influencing population dynamics, but the relationship is not straightforward. For an herbivore, plant quality depends not only on the balance of nutrients and antinutrients in plant tissues, which is influenced by land use and climate change, but also on the nutritional state and demands of the herbivore, as well as its capacity to extract nutrients from host plants. In contrast to the concept of a positive relationship between nitrogen or protein concentration and herbivore performance, a five-decade review of lab and field studies indicates that equating plant N to plant quality is misleading because grasshoppers respond negatively or neutrally to increasing plant N just as often as they respond positively. For locusts specifically, low-N environments are actually beneficial because they supply high energy rates that support migration. Therefore, intensive land use, such as continuous grazing or cropping, and elevated ambient CO2levels that decrease the protein:carbohydrate ratios of plants are predicted to broadly promote locust outbreaks.
more »
« less
- PAR ID:
- 10509353
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Entomology
- Volume:
- 69
- Issue:
- 1
- ISSN:
- 0066-4170
- Page Range / eLocation ID:
- 527 to 550
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Variation in immune response in the generalist herbivore fall webworm across four common host plantsAbstract Dietary generalist herbivorous insects are widespread and often occur in a variety of environments. Across their geographic range, herbivorous insects may encounter variable plant traits as they feed on high‐quality or low‐quality plants. Herbivorous insect larvae experience both bottom‐up (host plant) and top‐down (parasitoid) factors that affect survival. Host plant quality may affect larval growth and survival in that larvae feeding on low‐quality plants often suffer reduced fitness. However, herbivores on different host plants are also subject to different levels of parasitism. High‐quality plants confer stronger larval performance (higher survival, more offspring), but larvae may also face higher parasitism. In some herbivore species, diet mediates larval immune response. The generalist insect herbivore fall webworm (FW),Hyphantria cuneaDrury (Lepidoptera: Erebidae), is a moth native to North America, and its larvae have considerable variance in their performance when reared on different host plants. We investigated whether diet affects the immune response in FW larvae when they are reared on different host plant species known to vary in food quality. We measured immune response by melanization of a nylon filament. We found significant differences in immune response across host plants, indicating that diet mediates immune response in FW larvae. Our study helps elucidate the factors that cause variation in immune response in a generalist herbivore.more » « less
-
Abstract Human induced climate and land‐use change are severely impacting global biodiversity, but how community composition and richness of multiple taxonomic groups change in response to local drivers and whether these responses are synchronous remains unclear. We used long‐term community‐level data from an experimentally manipulated grassland to assess the relative influence of climate and land use as drivers of community structure of four taxonomic groups: birds, mammals, grasshoppers, and plants. We also quantified the synchrony of responses among taxonomic groups across land‐use gradients and compared climatic drivers of community structure across groups. All four taxonomic groups responded strongly to land use (fire frequency and grazing), while responses to climate variability were more pronounced in grasshoppers and small mammals. Animal groups exhibited asynchronous responses across all land‐use treatments, but plant and animal groups, especially birds, exhibited synchronous responses in composition. Asynchrony was attributed to taxonomic groups responding to different components of climate variability, including both current climate conditions and lagged effects from the previous year. Data‐driven land management strategies are crucial for sustaining native biodiversity in grassland systems, but asynchronous responses of taxonomic groups to climate variability across land‐use gradients highlight a need to incorporate response heterogeneity into management planning.more » « less
-
Vertebrate herbivore excrement is thought to influence nutrient cycling, plant nutrition, and growth; however, its importance is rarely isolated from other aspects of herbivory, such as trampling and leaf removal, leaving questions about the extent to which herbivore effects are due to feces. We hypothesized that as a source of additional nutrients, feces would directly increase soil N concentrations and N2O emission, alleviate plant, and microbial nutrient limitations, resulting in increased plant growth and foliar quality, and increase CH4 emissions. We tested these hypotheses using a field experiment in coastal western Alaska,USA, where we manipulated goose feces such that naturally grazed areas received three treatments:feces removal, ambient amounts of feces, or double ambient amounts of feces. Doubling feces marginally increased NH4 +-N in soil water, whereas both doubled feces and feces removal significantly increased NO3--N; N2O flux was also higher in removal plots. Feces removal marginally reduced root biomass and significantly reduced productivity (that is, GPP) in the second year, measured as greater CO2 emissions. Doubling feces marginally increased foliar chemical quality by increasing %N and decreasing C:N. Treatments did not influence CH4 flux. In short, feces removal created sites poorer in nutrients, with reduced root growth, graminoid nutrient uptake, and productivity. While goose feces alone did not create dramatic changes in nutrient cycling in western Alaska, they do appear to be an important source of nutrients for grazed areas and to contribute to greenhouse gas exchange as their removal increased emissions of CO2 and N2O to the atmosphere.more » « less
-
Phenological mismatch can occur when plants and herbivores differentially respond to changing phenological cues, such as temperature or snow melt date. This often shifts herbivore feeding to plant stages of lower quality. How herbivores respond to plant quality may be also mediated by temperature, which could lead to temperature-by-phenology interactions. We examined how aphid abundance and mutualism with ants were impacted by temperature and host plant phenology. In this study system, aphids Aphis asclepiadis colonize flowering stalks of the host plant, Ligusticum porteri. Like other aphids, abundance of this species is dependent on ant protection. To understand how host plant phenology and temperature affect aphid abundance, we used a multiyear observational study and a field experiment. We observed 20 host plant populations over five years (2017–2021), tracking temperature and snow melt date as well as host plant phenology and insect abundance. We found host plant and aphid phenology to differentially respond to temperature and snow melt timing. Early snow melt accelerated host plant phenology to a greater extent than aphid phenology, which was more responsive to temperature. Both the likelihood of aphid colony establishment and ant recruitment were reduced when aphids colonized host plants at post-flowering stages. In 2019, we experimentally accelerated host plant phenology by advancing snow melt date by two weeks. We factorially combined this treatment with open top warming chambers surrounding aphid colonies. Greatest growth occurred for colonies under ambient temperatures when they occurred on host plants at the flowering stage. Altogether, our results suggest that phenological mismatch with host plants can decrease aphid abundance, and this effect is exacerbated by temperature increases and changes to the ant–aphid mutualism.more » « less
An official website of the United States government

