skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: An extensive disulfide bond network prevents tail contraction in Agrobacterium tumefaciens phage Milano
Abstract A contractile sheath and rigid tube assembly is a widespread apparatus used by bacteriophages, tailocins, and the bacterial type VI secretion system to penetrate cell membranes. In this mechanism, contraction of an external sheath powers the motion of an inner tube through the membrane. The structure, energetics, and mechanism of the machinery imply rigidity and straightness. The contractile tail ofAgrobacterium tumefaciensbacteriophage Milano is flexible and bent to varying degrees, which sets it apart from other contractile tail-like systems. Here, we report structures of the Milano tail including the sheath-tube complex, baseplate, and putative receptor-binding proteins. The flexible-to-rigid transformation of the Milano tail upon contraction can be explained by unique electrostatic properties of the tail tube and sheath. All components of the Milano tail, including sheath subunits, are crosslinked by disulfides, some of which must be reduced for contraction to occur. The putative receptor-binding complex of Milano contains a tailspike, a tail fiber, and at least two small proteins that form a garland around the distal ends of the tailspikes and tail fibers. Despite being flagellotropic, Milano lacks thread-like tail filaments that can wrap around the flagellum, and is thus likely to employ a different binding mechanism.  more » « less
Award ID(s):
2054392
PAR ID:
10509357
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tail tube assembly is an essential step in the lifecycle of long-tailed bacteriophages. Limited structural and biophysical information has impeded an understanding of assembly and stability of their long, flexible tail tubes. The hyperthermophilic phage P74-26 is particularly intriguing as it has the longest tail of any known virus (nearly 1 μm) and is the most thermostable known phage. Here, we use structures of the P74-26 tail tube along with an in vitro system for studying tube assembly kinetics to propose the first molecular model for the tail tube assembly of long-tailed phages. Our high-resolution cryo-EM structure provides insight into how the P74-26 phage assembles through flexible loops that fit into neighboring rings through tight "ball-and-socket"-like interactions. Guided by this structure, and in combination with mutational, light scattering, and molecular dynamics simulations data, we propose a model for the assembly of conserved tube-like structures across phage and other entities possessing tail tube-like proteins. We propose that formation of a full ring promotes the adoption of a tube elongation-competent conformation among the flexible loops and their corresponding sockets, which is further stabilized by an adjacent ring. Tail assembly is controlled by the cooperative interaction of dynamic intraring and interring contacts. Given the structural conservation among tail tube proteins and tail-like structures, our model can explain the mechanism of high-fidelity assembly of long, stable tubes. 
    more » « less
  2. null (Ed.)
    Abstract An extensible continuum manipulator (ECM) has specific advantages over its non-extensible counterparts. For instance, in certain applications, such as minimally invasive surgery or tube inspection, the base motion might be limited or disallowed. The additional extensibility provides the robot with more dexterous manipulation and larger workspace. Existing continuum robot designs achieve extensibility mainly through artificial muscle/pneumatic, extensible backbone, concentric tube, and base extension etc. This paper proposes a new way to achieve this additional motion degree of freedom by taking advantage of the rigid coupling hybrid mechanism concept and a flexible parallel mechanism. More specifically, a rack and pinion set is used to transmit the motion of the i-th subsegment to drive the (i+1)-th subsegment. A six-chain flexible parallel mechanism is used to generate the desired spatial bending and one extension mobility for each subsegment. This way, the new manipulator is able to achieve tail-like spatial bending and worm-like extension at the same time. A proof-of-concept prototype was integrated to verify the mobility of the new mechanism. Corresponding kinematic analyses are conducted to estimate the workspace and the motion non-uniformity. 
    more » « less
  3. Abstract Lepidopteran male moths have an extraordinarily sensitive olfactory system that is capable of detecting and responding to minute amounts of female-secreted pheromones over great distances. Pheromone-binding proteins (PBPs) in male antennae ferry the hydrophobic ligand across the aqueous lymph to the olfactory receptor neuron triggering the response. PBPs bind ligands at physiological pH of the lymph and release them at acidic pH near the receptor while undergoing a conformational change. InAnthereae polyphemusPBP1, ligand binding to the hydrophobic pocket and its release is regulated by two biological gates: His70 and His95 at one end of the pocket and C-terminus tail at the other end. Interestingly, in Asian corn borerOstrinia furnacalisPBP2 (OfurPBP2), critical residues for ligand binding and release are substituted in both biological gates. The impact of these substitutions on the ligand binding and release mechanism in OfurPBP2 is not known. We report here overexpression of soluble OfurPBP2 and structural characterization at high and low pH by circular dichroism (CD) and NMR. Ligand binding and ab initio model development were carried out with fluorescence and small-angle X-ray scattering (SAXS) respectively. OfurPBP2 in solution at pH 6.5 is homogeneous, well-folded and has a compact globular shape. 
    more » « less
  4. Cingolani, Gino (Ed.)
    Background: Genome flow is a fundamental aspect of all biological systems. In viruses, it involves movement of nucleic acid genomes into and out of a proteinaceous capsid. Viruses must recover their newly replicated genomes into a protective capsid shell (packaging) and then safely re-introduce them into a new host (ejection) to initiate infection. While the mechanisms of DNA genome packaging in large icosahedral bacteriophages (phages) and viruses have been extensively investigated, the post-packaging mechanisms involving retention, positioning, and ejection of packaged genome are poorly understood. Aims: Using the tailed phage T4 as a model, we delineated the structural and assembly intermediates involved in transitioning a DNA-full head into an infectious virion particle, and then into a genome delivering supramolecular machine. These include intermediates of neck attachment, virion assembly, and genome release into E. coli. Methods: Various intermediates produced either by mutant phage infection or recombinant protein expression have been purified and biochemically characterized. Molecular genetic approaches were used to analyze the functional significance of amino acids involved in assembly. Structures of the purified particles were determined to near atomic resolution by cryo-electron microscopy and cryo-electron tomography. Results: Following termination of headful packaging, the pressurized T4 capsid containing tightly packed genome is sealed by the assembly of neck proteins gp13 and gp14. A dramatic conformational change in the portal dodecamer is evident, which expels the packaging motor while opening sites in portal’s “clip” domain exposed outside the capsid for binding the gp13 neck protein. Unexpectedly, we discovered that a host protein Hfq, a nucleic acid binding protein, plugs the neck structure. Hfq apparently helps to further stabilize the sealed head as it awaits tail attachment. After tail attachment, a genome end, likely the last packaged DNA, descends into the tail tube and precisely positions through interaction with an N-terminal DNA-binding motif of the tape measure protein (TMP) gp29. Six coiled-coil strands of TMP form the innermost tube of phage T4 tail, connected at the top end with DNA and at the bottom end with gp48 tube and baseplate. When the tail sheath contracts and the baseplate transform from hexagon to star shape, TMP pilots the genome to the tip of the tail tube, poised for delivery. Then, when the baseplate plug is opened fully, TMP is expelled by DNA pressure and remodels into a transmembrane channel and guides the genome to flow smoothly through the E. coli membrane envelope into the cytosol. Conclusion: Our studies describe the structural transitions of a complex and large myophage T4 in unprecedented detail. The mechanisms involve symmetry matches and mismatches, morphing, conformational transitions, and molecular remodeling that lead to genome retention, genome positioning, and genome release, precisely and efficiently. 
    more » « less
  5. Abstract Large gaps exist in our understanding of how bacteriophages, the most abundant biological entities on Earth, assemble and function. The structure of the “neck” region, where the DNA-filled capsid is connected to the host-recognizing tail remains poorly understood. We describe cryo-EM structures of the neck, the neck-capsid and neck-tail junctions, and capsid of theAgrobacteriumphage Milano. The Milano neck 1 protein connects the 12-fold symmetrical neck to a 5-fold vertex of the icosahedral capsid. Comparison of Milano neck 1 homologs leads to four proposed classes, likely evolved from the simplest one in siphophages to more complex ones in myo- and podophages. Milano neck is surrounded by the atypical collar, which covalently crosslinks the tail sheath to neck 1. The Milano capsid is decorated with three types of proteins, a minor capsid protein (mCP) and two linking proteins crosslinking the mCP to the major capsid protein. The extensive network of disulfide bonds within and between neck, collar, capsid and tail provides an exceptional structural stability to Milano. 
    more » « less