skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Convergent escape behaviour from distinct visual processing of impending collision in fish and grasshoppers
AbstractIn animal species ranging from invertebrate to mammals, visually guided escape behaviours have been studied using looming stimuli, the two‐dimensional expanding projection on a screen of an object approaching on a collision course at constant speed. The peak firing rate or membrane potential of neurons responding to looming stimuli often tracks a fixed threshold angular size of the approaching stimulus that contributes to the triggering of escape behaviours. To study whether this result holds more generally, we designed stimuli that simulate acceleration or deceleration over the course of object approach on a collision course. Under these conditions, we found that the angular threshold conveyed by collision detecting neurons in grasshoppers was sensitive to acceleration whereas the triggering of escape behaviours was less so. In contrast, neurons in goldfish identified through the characteristic features of the escape behaviours they trigger, showed little sensitivity to acceleration. This closely mirrored a broader lack of sensitivity to acceleration of the goldfish escape behaviour. Thus, although the sensory coding of simulated colliding stimuli with non‐zero acceleration probably differs in grasshoppers and goldfish, the triggering of escape behaviours converges towards similar characteristics. Approaching stimuli with non‐zero acceleration may help refine our understanding of neural computations underlying escape behaviours in a broad range of animal species.image Key pointsA companion manuscript showed that two mathematical models of collision‐detecting neurons in grasshoppers and goldfish make distinct predictions for the timing of their responses to simulated objects approaching on a collision course with non‐zero acceleration.Testing these experimental predictions showed that grasshopper neurons are sensitive to acceleration while goldfish neurons are not, in agreement with the distinct models proposed previously in these species using constant velocity approaches.Grasshopper and goldfish escape behaviours occurred after the stimulus reached a fixed angular size insensitive to acceleration, suggesting further downstream processing in grasshopper motor circuits to match what was observed in goldfish.Thus, in spite of different sensory processing in the two species, escape behaviours converge towards similar solutions.The use of object acceleration during approach on a collision course may help better understand the neural computations implemented for collision avoidance in a broad range of species.  more » « less
Award ID(s):
2021795
PAR ID:
10509361
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Journal of Physiology
Volume:
601
Issue:
19
ISSN:
0022-3751
Page Range / eLocation ID:
4355 to 4373
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. AbstractEating behaviours are influenced by the integration of gustatory, olfactory and somatosensory signals, which all contribute to the perception of flavour. Although extensive research has explored the neural correlates of taste in the gustatory cortex (GC), less is known about its role in encoding thermal information. This study investigates the encoding of oral thermal and chemosensory signals by GC neurons compared to the oral somatosensory cortex. In this study we recorded the spiking activity of more than 900 GC neurons and 500 neurons from the oral somatosensory cortex in mice allowed to freely lick small drops of gustatory stimuli or deionized water at varying non‐nociceptive temperatures. We then developed and used a Bayesian‐based analysis technique to assess neural classification scores based on spike rate and phase timing within the lick cycle. Our results indicate that GC neurons rely predominantly on rate information, although phase information is needed to achieve maximum accuracy, to effectively encode both chemosensory and thermosensory signals. GC neurons can effectively differentiate between thermal stimuli, excelling in distinguishing both large contrasts (14vs. 36°C) and, although less effectively, more subtle temperature differences. Finally a direct comparison of the decoding accuracy of thermosensory signals between the two cortices reveals that whereas the somatosensory cortex exhibited higher overall accuracy, the GC still encodes significant thermosensory information. These findings highlight the GC's dual role in processing taste and temperature, emphasizing the importance of considering temperature in future studies of taste processing.image Key pointsFlavour perception relies on gustatory, olfactory and somatosensory integration, with the gustatory cortex (GC) central to taste processing.GC neurons also respond to temperature, but the specifics of how the GC processes taste and oral thermal stimuli remain unclear.The focus of this study is on the role of GC neurons in the encoding of oral thermal information, particularly compared to the coding functions of the oral somatosensory cortex.We found that whereas the somatosensory cortex shows a higher classification accuracy for distinguishing water temperature, the GC still encodes a substantial amount of thermosensory information.These results emphasize the importance of including temperature as a key factor in future studies of cortical taste coding. 
    more » « less
  2. AbstractMotor neurons are the longest neurons in the body, with axon terminals separated from the soma by as much as a meter. These terminals are largely autonomous with regard to their bioenergetic metabolism and must burn energy at a high rate to sustain muscle contraction. Here, through computer simulation and drawing on previously published empirical data, we determined that motor neuron terminals inDrosophila larvae experience highly volatile power demands. It might not be surprising then, that we discovered the mitochondria in the motor neuron terminals of bothDrosophila and mice to be heavily decorated with phosphagen kinases ‐ a key element in an energy storage and buffering system well‐characterized in fast‐twitch muscle fibres. Knockdown of arginine kinase 1 (ArgK1) inDrosophilalarval motor neurons led to several bioenergetic deficits, including mitochondrial matrix acidification and a faster decline in the cytosol ATP to ADP ratio during axon burst firing.image Key pointsNeurons commonly fire in bursts imposing highly volatile demands on the bioenergetic machinery that generates ATP.Using a computational approach, we built profiles of presynaptic power demand at the level of single action potentials, as well as the transition from rest to sustained activity.Phosphagen systems are known to buffer ATP levels in muscles and we demonstrate that phosphagen kinases, which support such phosphagen systems, also localize to mitochondria in motor nerve terminals of fruit flies and mice.By knocking down phosphagen kinases in fruit fly motor nerve terminals, and using fluorescent reporters of the ATP:ADP ratio, lactate, pH and Ca2+, we demonstrate a role for phosphagen kinases in stabilizing presynaptic ATP levels.These data indicate that the maintenance of phosphagen systems in motor neurons, and not just muscle, could be a beneficial initiative in sustaining musculoskeletal health and performance. 
    more » « less
  3. AbstractIn stroke, the sudden deprivation of oxygen to neurons triggers a profuse release of glutamate that induces anoxic depolarization (AD) and leads to rapid cell death. Importantly, the latency of the glutamate‐driven AD event largely dictates subsequent tissue damage. Although the contribution of synaptic glutamate during ischaemia is well‐studied, the role of tonic (ambient) glutamate has received far less scrutiny. The majority of tonic, non‐synaptic glutamate in the brain is governed by the cystine/glutamate antiporter, system xc. Employing hippocampal slice electrophysiology, we showed that transgenic mice lacking a functional system xcdisplay longer latencies to AD and altered depolarizing waves compared to wild‐type mice after total oxygen deprivation. Experiments which pharmacologically inhibited system xc, as well as those manipulating tonic glutamate levels and those antagonizing glutamate receptors, revealed that the antiporter's putative effect on ambient glutamate precipitates the ischaemic cascade. As such, the current study yields novel insight into the pathogenesis of acute stroke and may direct future therapeutic interventions.image Key pointsIschaemic stroke remains the leading cause of adult disability in the world, but efforts to reduce stroke severity have been plagued by failed translational attempts to mitigate glutamate excitotoxicity.Elucidating the ischaemic cascade, which within minutes leads to irreversible tissue damage induced by anoxic depolarization, must be a principal focus.Data presented here show that tonic, extrasynaptic glutamate supplied by system xcsynergizes with ischaemia‐induced synaptic glutamate release to propagate AD and exacerbate depolarizing waves.Exploiting the role of system xcand its obligate release of ambient glutamate could, therefore, be a novel therapeutic direction to attenuate the deleterious effects of acute stroke. 
    more » « less
  4. Locusts exhibit remarkable phenotypic plasticity changing their appearance and behavior from solitary to gregarious when population density increases. These changes include morphological differences in the size and shape of brain regions, but little is known about plasticity within individual neurons and alterations in behavior not directly related to aggregation or swarming. We investigated looming escape behavior and the properties of a well-studied collision-detection neuron in gregarious and solitarious animals of three closely related species, the desert locust (Schistocerca gregaria), the Central American locust (S. piceifrons) and the American bird grasshopper (S. americana). For this neuron, the lobula giant movement detector (LGMD), we examined dendritic morphology, membrane properties, gene expression, and looming responses. Gregarious animals reliably jumped in response to looming stimuli, but surprisingly solitarious desert locusts did not produce escape jumps. These solitarious animals also had smaller LGMD dendrites. This is the first study done on three different species of grasshoppers to observe the effects of phenotypic plasticity on the jump escape behavior, physiology and transcriptomics of these animals. Unexpectedly, there were little differences in these properties between the two phases except for behavior. For the three species, gregarious animals jumped more than solitarious animals, but no significant differences were found between the two phases of animals in the electrophysiological and transcriptomics studies of the LGMD. Our results suggest that phase change impacts mainly the motor system and that the physiological properties of motor neurons need to be characterized to understand fully the variation in jump escape behavior across phases. 
    more » « less
  5. AbstractThe Kölliker–Fuse nucleus (KF), which is part of the parabrachial complex, participates in the generation of eupnoea under resting conditions and the control of active abdominal expiration when increased ventilation is required. Moreover, dysfunctions in KF neuronal activity are believed to play a role in the emergence of respiratory abnormalities seen in Rett syndrome (RTT), a progressive neurodevelopmental disorder associated with an irregular breathing pattern and frequent apnoeas. Relatively little is known, however, about the intrinsic dynamics of neurons within the KF and how their synaptic connections affect breathing pattern control and contribute to breathing irregularities. In this study, we use a reduced computational model to consider several dynamical regimes of KF activity paired with different input sources to determine which combinations are compatible with known experimental observations. We further build on these findings to identify possible interactions between the KF and other components of the respiratory neural circuitry. Specifically, we present two models that both simulate eupnoeic as well as RTT‐like breathing phenotypes. Using nullcline analysis, we identify the types of inhibitory inputs to the KF leading to RTT‐like respiratory patterns and suggest possible KF local circuit organizations. When the identified properties are present, the two models also exhibit quantal acceleration of late‐expiratory activity, a hallmark of active expiration featuring forced exhalation, with increasing inhibition to KF, as reported experimentally. Hence, these models instantiate plausible hypotheses about possible KF dynamics and forms of local network interactions, thus providing a general framework as well as specific predictions for future experimental testing.image Key pointsThe Kölliker–Fuse nucleus (KF), a part of the parabrachial complex, is involved in regulating normal breathing and controlling active abdominal expiration during increased ventilation.Dysfunction in KF neuronal activity is thought to contribute to respiratory abnormalities seen in Rett syndrome (RTT). This study utilizes computational modelling to explore different dynamical regimes of KF activity and their compatibility with experimental observations.By analysing different model configurations, the study identifies inhibitory inputs to the KF that lead to RTT‐like respiratory patterns and proposes potential KF local circuit organizations.Two models are presented that simulate both normal breathing and RTT‐like breathing patterns.These models provide testable hypotheses and specific predictions for future experimental investigations, offering a general framework for understanding KF dynamics and potential network interactions. 
    more » « less