skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On generalizations of the nonwindowed scattering transform
In this paper, we generalize finite depth wavelet scattering transforms, which we formulate as L^q(R^n) norms of a cascade of continuous wavelet transforms (or dyadic wavelet transforms) and contractive nonlinearities. We then provide norms for these operators, prove that these operators are well-defined, and are Lipschitz continuous to the action of C^2 diffeomorphisms in specific cases. Lastly, we extend our results to formulate an operator invariant to the action of rotations and an operator that is equivariant to the action of rotations.  more » « less
Award ID(s):
2309570 2136198
PAR ID:
10509366
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Editor(s):
Balan, Radu
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Applied and Computational Harmonic Analysis
Edition / Version:
NA
Volume:
68
Issue:
C
ISSN:
1063-5203
Page Range / eLocation ID:
101597
Subject(s) / Keyword(s):
Wavelets Wavelet scattering transform Deformation stability
Format(s):
Medium: X Size: 651KB Other: pdf
Size(s):
651KB
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Beginning with the work of Landau, Pollak and Slepian in the 1960s on time‐band limiting, commuting pairs of integral and differential operators have played a key role in signal processing, random matrix theory, and integrable systems. Previously, such pairs were constructed by ad hoc methods, which essentially worked because a commuting operator of low order could be found by a direct calculation. We describe a general approach to these problems that proves that every pointWof Wilson's infinite dimensional adelic Grassmannian gives rise to an integral operator , acting on for a contour , which reflects a differential operator with rational coefficients in the sense that on a dense subset of . By using analytic methods and methods from integrable systems, we show that the reflected differential operator can be constructed from the Fourier algebra of the associated bispectral function . The exact size of this algebra with respect to a bifiltration is in turn determined using algebro‐geometric methods. Intrinsic properties of four involutions of the adelic Grassmannian naturally lead us to consider the reflecting property above in place of plain commutativity. Furthermore, we prove that the time‐band limited operators of the generalized Laplace transforms with kernels given by the rank one bispectral functions always reflect a differential operator. A 90° rotation argument is used to prove that the time‐band limited operators of the generalized Fourier transforms with kernels admit a commuting differential operator. These methods produce vast collections of integral operators with prolate‐spheroidal properties, associated to the wave functions of all rational solutions of the KP hierarchy vanishing at infinity, introduced by Krichever in the late 1970s. 
    more » « less
  2. Commuting integral and differential operators connect the topics of signal processing, random matrix theory, and integrable systems. Previously, the construction of such pairs was based on direct calculation and concerned concrete special cases, leaving behind important families such as the operators associated to the rational solutions of the Korteweg–de Vries (KdV) equation. We prove a general theorem that the integral operator associated to every wave function in the infinite-dimensional adelic Grassmannian G r a d of Wilson always reflects a differential operator (in the sense of Definition 1 below). This intrinsic property is shown to follow from the symmetries of Grassmannians of Kadomtsev–Petviashvili (KP) wave functions, where the direct commutativity property holds for operators associated to wave functions fixed by Wilson’s sign involution but is violated in general. Based on this result, we prove a second main theorem that the integral operators in the computation of the singular values of the truncated generalized Laplace transforms associated to all bispectral wave functions of rank 1 reflect a differential operator. A 9 0 ○ rotation argument is used to prove a third main theorem that the integral operators in the computation of the singular values of the truncated generalized Fourier transforms associated to all such KP wave functions commute with a differential operator. These methods produce vast collections of integral operators with prolate-spheroidal properties, including as special cases the integral operators associated to all rational solutions of the KdV and KP hierarchies considered by [Airault, McKean, and Moser, Commun. Pure Appl. Math. 30, 95–148 (1977)] and [Krichever, Funkcional. Anal. i Priložen. 12, 76–78 (1978)], respectively, in the late 1970s. Many examples are presented. 
    more » « less
  3. null (Ed.)
    Abstract We introduce a set of novel multiscale basis transforms for signals on graphs that utilize their “dual” domains by incorporating the “natural” distances between graph Laplacian eigenvectors, rather than simply using the eigenvalue ordering. These basis dictionaries can be seen as generalizations of the classical Shannon wavelet packet dictionary to arbitrary graphs, and do not rely on the frequency interpretation of Laplacian eigenvalues. We describe the algorithms (involving either vector rotations or orthogonalizations) to construct these basis dictionaries, use them to efficiently approximate graph signals through the best basis search, and demonstrate the strengths of these basis dictionaries for graph signals measured on sunflower graphs and street networks. 
    more » « less
  4. Paraproducts are a special subclass of the multilinear Calderón-Zygmund operators, and their Lebesgue space estimates in the full multilinear range are characterized by the norm of the symbol. In this note, we characterize the Sobolev space boundedness properties of multilinear paraproducts in terms of a suitable family of Triebel-Lizorkin type norms of the symbol. Coupled with a suitable wavelet representation theorem, this characterization leads to a new family of Sobolev space T(1)-type theorems for multilinear Calderón-Zygmund operators. 
    more » « less
  5. continuous state and action spaces is bilevel planning, wherein a high- level search over an abstraction of an environment is used to guide low-level decision-making. Recent work has shown how to enable such bilevel planning by learning abstract models in the form of symbolic operators and neural sam- plers. In this work, we show that existing symbolic operator learning approaches fall short in many robotics domains where a robot’s actions tend to cause a large number of irrelevant changes in the abstract state. This is primarily because they attempt to learn operators that exactly predict all observed changes in the abstract state. To overcome this issue, we propose to learn operators that ‘choose what to predict’ by only modelling changes necessary for abstract planning to achieve specified goals. Experimentally, we show that our approach learns operators that lead to efficient planning across 10 different hybrid robotics domains, including 4 from the challenging BEHAVIOR-100 benchmark, while generalizing to novel initial states, goals, and objects. 
    more » « less