Human whole-brain functional connectivity networks have been shown to exhibit both local/quasilocal (e.g., a set of functional sub-circuits induced by node or edge attributes) and non-local (e.g., higher-order functional coordination patterns) properties. Nonetheless, the non-local properties of topological strata induced by local/quasilocal functional sub-circuits have yet to be addressed. To that end, we proposed a homological formalism that enables the quantification of higher-order characteristics of human brain functional sub-circuits. Our results indicate that each homological order uniquely unravels diverse, complementary properties of human brain functional sub-circuits. Noticeably, the H1 homological distance between rest and motor task was observed at both the whole-brain and sub-circuit consolidated levels, which suggested the self-similarity property of human brain functional connectivity unraveled by a homological kernel. Furthermore, at the whole-brain level, the rest–task differentiation was found to be most prominent between rest and different tasks at different homological orders: (i) Emotion task (H0), (ii) Motor task (H1), and (iii) Working memory task (H2). At the functional sub-circuit level, the rest–task functional dichotomy of the default mode network is found to be mostly prominent at the first and second homological scaffolds. Also at such scale, we found that the limbic network plays a significant role in homological reconfiguration across both the task and subject domains, which paves the way for subsequent investigations on the complex neuro-physiological role of such network. From a wider perspective, our formalism can be applied, beyond brain connectomics, to study the non-localized coordination patterns of localized structures stretching across complex network fibers.
more » « less- Award ID(s):
- 1837964
- PAR ID:
- 10509368
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Mathematics
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2227-7390
- Page Range / eLocation ID:
- 455
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Kay, Kendrick (Ed.)A central goal of neuroscience is to understand how function-relevant brain activations are generated. Here we test the hypothesis that function-relevant brain activations are generated primarily by distributed network flows. We focused on visual processing in human cortex, given the long-standing literature supporting the functional relevance of brain activations in visual cortex regions exhibiting visual category selectivity. We began by using fMRI data from N = 352 human participants to identify category-specific responses in visual cortex for images of faces, places, body parts, and tools. We then systematically tested the hypothesis that distributed network flows can generate these localized visual category selective responses. This was accomplished using a recently developed approach for simulating – in a highly empirically constrained manner – the generation of task-evoked brain activations by modeling activity flowing over intrinsic brain connections. We next tested refinements to our hypothesis, focusing on how stimulus-driven network interactions initialized in V1 generate downstream visual category selectivity. We found evidence that network flows directly from V1 were sufficient for generating visual category selectivity, but that additional, globally distributed (whole-cortex) network flows increased category selectivity further. Using null network architectures we also found that each region’s unique intrinsic “connectivity fingerprint” was key to the generation of category selectivity. These results generalized across regions associated with all four visual categories tested (bodies, faces, places, and tools), and provide evidence that the human brain’s intrinsic network organization plays a prominent role in the generation of functionally relevant, localized responses.more » « less
-
Brain network models (BNMs) have become a promising theoretical framework for simulating signals that are representative of whole-brain activity such as resting-state fMRI. However, it has been difficult to compare the complex brain activity obtained from simulations to empirical data. Previous studies have used simple metrics to characterize coordination between regions such as functional connectivity. We extend this by applying various different dynamic analysis tools that are currently used to understand empirical resting-state fMRI (rs-fMRI) to the simulated data. We show that certain properties correspond to the structural connectivity input that is shared between the models, and certain dynamic properties relate more to the mathematical description of the brain network model. We conclude that the dynamic properties that explicitly examine patterns of signal as a function of time rather than spatial coordination between different brain regions in the rs-fMRI signal seem to provide the largest contrasts between different BNMs and the unknown empirical dynamical system. Our results will be useful in constraining and developing more realistic simulations of whole-brain activity.more » « less
-
Abstract Individuals differ greatly in their ability to remember the details of past events, yet little is known about the brain processes that explain such individual differences in a healthy young population. Previous research suggests that episodic memory relies on functional communication among ventral regions of the default mode network (“DMN-C”) that are strongly interconnected with the medial temporal lobes. In this study, we investigated whether the intrinsic functional connectivity of the DMN-C subnetwork is related to individual differences in memory ability, examining this relationship across 243 individuals (ages 18-50 years) from the openly available Cambridge Center for Aging and Neuroscience (Cam-CAN) dataset. We first estimated each participant’s whole-brain intrinsic functional brain connectivity by combining data from resting-state, movie-watching, and sensorimotor task scans to increase statistical power. We then examined whether intrinsic functional connectivity predicted performance on a narrative recall task. We found no evidence that functional connectivity of the DMN-C, with itself, with other related DMN subnetworks, or with the rest of the brain, was related to narrative recall. Exploratory connectome-based predictive modeling (CBPM) analyses of the entire connectome revealed a whole-brain multivariate pattern that predicted performance, although these changes were largely outside of known memory networks. These results add to emerging evidence suggesting that individual differences in memory cannot be easily explained by brain differences in areas typically associated with episodic memory function.
-
Abstract A critical goal of cognitive neuroscience is to predict behavior from neural structure and function, thereby providing crucial insights into who might benefit from clinical and/or educational interventions. Across development, the strength of functional connectivity among a distributed set of brain regions is associated with children’s math skills. Therefore, in the present study we use connectome-based predictive modeling to investigate whether functional connectivity during numerical processing and at rest “predicts” children’s math skills (N = 31, Mage = 9.21 years, 14 Female). Overall, we found that functional connectivity during symbolic number comparison and rest, but not during nonsymbolic number comparison, predicts children’s math skills. Each task revealed a largely distinct set of predictive connections distributed across canonical brain networks and major brain lobes. Most of these predictive connections were negatively correlated with children’s math skills so that weaker connectivity predicted better math skills. Notably, these predictive connections were largely nonoverlapping across task states, suggesting children’s math abilities may depend on state-dependent patterns of network segregation and/or regional specialization. Furthermore, the current predictive modeling approach moves beyond brain–behavior correlations and toward building models of brain connectivity that may eventually aid in predicting future math skills.more » « less
-
null (Ed.)Abstract Creative cognition has been consistently associated with functional connectivity between frontoparietal control and default networks. However, recent research identified distinct connectivity dynamics for subnetworks within the larger frontoparietal system—one subnetwork (FPCNa) shows positive coupling with the default network and another subnetwork (FPCNb) shows negative default coupling—raising questions about how these networks interact during creative cognition. Here we examine frontoparietal subnetwork functional connectivity in a large sample of participants (n = 171) who completed a divergent creative thinking task and a resting-state scan during fMRI. We replicated recent findings on functional connectivity of frontoparietal subnetworks at rest: FPCNa positively correlated with the default network and FPCNb negatively correlated with the default network. Critically, we found that divergent thinking evoked functional connectivity between both frontoparietal subnetworks and the default network, but in different ways. Using community detection, we found that FPCNa regions showed greater coassignment to a default network community. However, FPCNb showed overall stronger functional connectivity with the default network—reflecting a reversal of negative connectivity at rest—and the strength of FPCNb-default network connectivity correlated with individual creative ability. These findings provide novel evidence of a behavioral benefit to the cooperation of typically anticorrelated brain networks.more » « less