skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on April 1, 2025

Title: Ballistic and Blast-Relevant, High-Rate Material Properties of Physically and Chemically Crosslinked Hydrogels
Abstract Background

Hydrogels are one of the most ubiquitous polymeric materials. Among them gelatin, agarose and polyacrylamide-based formulations have been effectively utilized in a variety of biomedical and defense-related applications including ultrasound-based therapies and soft tissue injury investigations stemming from ballistic and blast exposures. Interestingly, while in most cases accurate prediction of the mechanical response of these surrogate gels requires knowledge of the underlying finite deformation, high-strain rate material properties, it is these properties that have remained scarce in the literature.

Objective

Building on our prior works using Inertial Microcavitation Rheometry (IMR), here we present a comprehensive list of the high-strain rate (> 10$$^3$$31/s) mechanical properties of these three popular classes of hydrogel materials characterized via laser-based IMR, further showing that the choice in finite-deformation, rate-dependent constitutive model can be informed directly by the type of crosslinking mechanism and resultant network structure of the hydrogel, thus providing a chemophysical basis of the the choice of phenomenological constitutive model.

Methods

We analyze existing experimental gelatin IMR datasets and compare the results with prior data on polyacrylamide.

Results

We show that a Neo-Hookean Kelvin-Voigt (NHKV) model can suitably simulate the high-rate material response of dynamic, physically crosslinked hydrogels like gelatin, while the introduction of a strain-stiffening parameter through the use of the quadratic Kelvin-Voigt (qKV) model was necessary to appropriately model chemically crosslinked hydrogels such as polyacrylamide due to the nature of the static,covalent bonds that comprise their structure.

Conclusions

In this brief we show that knowledge of the type of underlying polymer structure, including its bond mobility, can directly inform the appropriate finite deformation, time-dependent viscoelastic material model for commonly employed tissue surrogate hydrogels undergoing high strain rate loading within the ballistic and blast regimes.

 
more » « less
Award ID(s):
2232428
NSF-PAR ID:
10509374
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Experimental Mechanics
Volume:
64
Issue:
4
ISSN:
0014-4851
Page Range / eLocation ID:
587 to 592
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A continuum damage model was developed to describe the finite tensile deformation of tough double‐network (DN) hydrogels synthesized by polymerization of a water‐soluble monomer inside a highly crosslinked rigid polyelectrolyte network. Damage evolution in DN hydrogels was characterized by performing loading‐unloading tensile tests and oscillatory shear rheometry on DN hydrogels synthesized from 3‐sulfopropyl acrylate potassium salt (SAPS) and acrylamide (AAm). The model can explain all the mechanical features of finite tensile deformation of DN hydrogels, including idealized Mullins effect and permanent set observed after unloading, qualitatively and quantitatively. The constitutive equation can describe the finite elasto‐plastic tensile behavior of DN hydrogels without resorting to a yield function. It was showed that tensile mechanics of DN hydrogels in the model is controlled by two material parameters which are related to the elastic moduli of first and second networks. In effect, the ratio of these two parameters is a dimensionless number that controls the behavior of material. The model can capture the stable branch of material response during neck propagation where engineering stress becomes constant. Consistent with experimental data, by increasing the elastic modulus of the second network the finite tensile behavior of the DN hydrogel changes from necking to strain hardening.

     
    more » « less
  2. A generalization of the Kelvin–Voigt model that can represent viscoelastic materials whose moduli depend on the mechanical pressure is derived from an implicit constitutive relation in which both the Cauchy stress and the linearized strain appear linearly. For consistency with the assumption of small deformation, a thresholding approach is applied. The proposed mixed variational problem is investigated for its well‐posedness within the context of maximal monotone and coercive graphs. For isotropic extension or compression, a semi‐analytic solution of the generalization of the Kelvin–Voigt problem under stress control is presented. The corresponding numerical simulation for monotone and cyclic pressure loading is carried out, and the results then compared against the linearized model.

     
    more » « less
  3. A newly developed polyacrylamide‐co‐methyl acrylate/spiropyran (SP) hydrogel crosslinked by SP mechanophore demonstrates multi‐stimuli‐responsive and mechanically strong properties. The hydrogels not only exhibit thermo‐, photo‐, and mechano‐induced color changes, but also achieve super‐strong mechanical properties (tensile stress of 1.45 MPa, tensile strain of ≈600%, and fracture energy of 7300 J m−2). Due to a reversible structural transformation between spiropyran (a ring‐close) and merocyanine (a ring‐open) states, simple exposure of the hydrogels to white light can reverse color changes and restore mechanical properties. The new design approach for a new mechanoresponsive hydrogel is easily transformative to the development of other mechanophore‐based hydrogels for sensing, imaging, and display applications.

     
    more » « less
  4. Extracellular vesicles (EVs) are gaining interest in regenerative medicine and biomaterials have been shown to extend EV bioavailability following delivery. Herein, the labeling of both hydrogels and EVs is reported to better understand hydrogel design for sustained EV release into tissues. Shear‐thinning hydrogels are engineered using guest–host (i.e., adamantane–cyclodextrin) modifications to hyaluronic acid (GH), as well as GH hydrogels with the addition of gelatin crosslinked via transglutaminase (GH+Gel) to temporally control hydrogel properties. When labeled with a near‐IR dye and injected into rat myocardial tissue, the GH+Gel hydrogel is retained (>14 days) longer than the GH hydrogel alone (≈7 days), likely due to the added gelatin network. To overcome challenges associated with common EV labeling methods, a highly versatile metabolic labeling methodology is utilized via the incorporation ofN‐azidoacetylmannosamine‐tetraacylated during EV synthesis to introduce azide groups that can then be reacted with DBCO dyes. When injected in saline, EVs are cleared within 24 h in hearts; however, hydrogels enhance EV retention, with levels based on hydrogel degradation behavior, namely, >14 days for GH+Gel hydrogel and ≈7 days for GH hydrogel alone. These findings support the use of hydrogels in EV therapies.

     
    more » « less
  5. Abstract

    Cell migration is critical for tissue development and regeneration but requires extracellular environments that are conducive to motion. Cells may actively generate migratory routes in vivo by degrading or remodeling their environments or instead utilize existing extracellular matrix microstructures or microtracks as innate pathways for migration. While hydrogels in general are valuable tools for probing the extracellular regulators of 3-dimensional migration, few recapitulate these natural migration paths. Here, we develop a biopolymer-based bicontinuous hydrogel system that comprises a covalent hydrogel of enzymatically crosslinked gelatin and a physical hydrogel of guest and host moieties bonded to hyaluronic acid. Bicontinuous hydrogels form through controlled solution immiscibility, and their continuous subdomains and high micro-interfacial surface area enable rapid 3D migration, particularly when compared to homogeneous hydrogels. Migratory behavior is mesenchymal in nature and regulated by biochemical and biophysical signals from the hydrogel, which is shown across various cell types and physiologically relevant contexts (e.g., cell spheroids, ex vivo tissues, in vivo tissues). Our findings introduce a design that leverages important local interfaces to guide rapid cell migration.

     
    more » « less