We describe a professional development model that supports teachers to integrate computational thinking (CT) and computer science principles into middle school science and STEM classes. The model includes the collaborative design (co-design) (Voogt et al., 2015) of storylines or curricular units aligned with the Next Generation Science Standards (NGSS Lead States, 2013) that utilize programmable sensors such as those contained on the micro:bit. Teachers spend several workshops co-designing CT-integrated storylines and preparing to implement them with their own students. As part of this process, teachers develop or modify curricular materials to ensure a focus on coherent, student driven instruction through the investigation of scientific phenomena that are relevant to the students and utilize sensor technology. Teachers implement the storylines and meet to collaboratively reflect on their instructional practices as well as their students’ learning. Throughout this cyclical, multi-year process, teachers develop expertise in CT-integrated science instruction as they plan for and use instructional practices that align with three dimension science teaching and foreground computational thinking. Throughout the professional learning process, teachers alternate between wearing their “student hats” and their “teacher hats”, in order to maintain both a student and teacher perspective as they co-design and reflect on their implementation of CT-integrated units. This paper illustrates two teachers’ experiences of the professional development process over a two-year period, including their learning, planning, implementation, and reflection on two co-designed units.
more »
« less
A model of programmatic co-design with teachers: five factors for success
This paper summarises the co-design model utilized throughout 2020–2022 by WeatherBlur, a community-based citizen science project. Project leaders and teachers working in classrooms across multiple states collaborated to develop iterative instructional practices for classroom implementation and professional development to support teachers’ use of the program. Participants received necessary support and training to facilitate their ongoing success as the project evolved and grew. External evaluators tracked the planning group’s co-design process, collecting data on the research-practitioner partnership and the ways their input impacted the project’s development over time. During the final year of the project, the planning group reflected upon their work and identified five criteria that emerged as successful elements of this co-design process. 1. Creating a culture of trust, 2. Time and patience, 3. Foundational knowledge and deconstruction for understanding, 4. Mutually beneficial collaboration, and 5. Commitment to engagement and flexibility. We present a full explanation of these five criteria, including how the WeatherBlur team developed and nurtured the associated behaviors and strategies. This set of takeaways is applicable to many contexts, and this paper provides insight for future co-design models seeking to replicate a development process that utilizes collective resources and input from a range of collaborators.
more »
« less
- Award ID(s):
- 1933491
- PAR ID:
- 10509388
- Publisher / Repository:
- Taylor & Francis Online
- Date Published:
- Journal Name:
- CoDesign
- ISSN:
- 1571-0882
- Page Range / eLocation ID:
- 1 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper examines the use of collaborative curriculum design (co-design) as a strategy for supporting teacher professional learning and the implementation of an inclusive middle school computer science and digital literacy (CSDL) curriculum in three urban school districts. The curriculum is focused on students developing mobile apps that provide social and community good. The second year of the project has been dedicated to developing and piloting curriculum resources that support remote learning and culturally relevant pedagogy while the partner districts switched to remote and hybrid instructions. This study explores teachers’ professional learning experiences in the collaborative design of curriculum materials and piloting the curriculum at their own classrooms. The paper includes analysis of three data sets: (1) co-design meeting notes and teacher reflections; (2) semi-structured interviews with teachers who co-designed and piloted the curriculum; (3) student pre- and post-survey responses on their attitude and interest in learning CSDL. Preliminary results indicate that the co-design approach supplemented with one-on-one coaching has not only facilitated the curriculum development process but also fostered professional learning and collective capacity building for implementing the project curriculum in the partner districts. Findings from student surveys show that students perceived their understanding of, and interest in computer science and creating apps were slightly improved, regardless of gender.more » « less
-
Abstract This paper provides an experience report on a co‐design approach with teachers to co‐create learning analytics‐based technology to support problem‐based learning in middle school science classrooms. We have mapped out a workflow for such applications and developed design narratives to investigate the implementation, modifications and temporal roles of the participants in the design process. Our results provide precedent knowledge on co‐designing with experienced and novice teachers and co‐constructing actionable insight that can help teachers engage more effectively with their students' learning and problem‐solving processes during classroom PBL implementations. Practitioner notesWhat is already known about this topicSuccess of educational technology depends in large part on the technology's alignment with teachers' goals for their students, teaching strategies and classroom context.Teacher and researcher co‐design of educational technology and supporting curricula has proven to be an effective way for integrating teacher insight and supporting their implementation needs.Co‐designing learning analytics and support technologies with teachers is difficult due to differences in design and development goals, workplace norms, and AI‐literacy and learning analytics background of teachers.What this paper addsWe provide a co‐design workflow for middle school teachers that centres on co‐designing and developing actionable insights to support problem‐based learning (PBL) by systematic development of responsive teaching practices using AI‐generated learning analytics.We adapt established human‐computer interaction (HCI) methods to tackle the complex task of classroom PBL implementation, working with experienced and novice teachers to create a learning analytics dashboard for a PBL curriculum.We demonstrate researcher and teacher roles and needs in ensuring co‐design collaboration and the co‐construction of actionable insight to support middle school PBL.Implications for practice and/or policyLearning analytics researchers will be able to use the workflow as a tool to support their PBL co‐design processes.Learning analytics researchers will be able to apply adapted HCI methods for effective co‐design processes.Co‐design teams will be able to pre‐emptively prepare for the difficulties and needs of teachers when integrating middle school teacher feedback during the co‐design process in support of PBL technologies.more » « less
-
This paper presents findings from a qualitative study of eleven experienced STEM educators who worked alongside developers to design and implement data-rich lessons in their grades 6–9 mathematics and science classrooms. In the context of a project that seeks to develop professional learning for data fluency, researchers documented the co-development process to articulate a model of what teachers need to know and be able to do in order to support their students’ data fluency. The project team distilled key findings into two framing documents: 1) a description of high-leverage areas of focus for PL which highlight challenges faced by teachers, which are common, important for data fluency, and represent opportunities for supporting teacher and student growth; and 2) a logic model that describes how the PL course under development is expected to influence teacher, classroom, and student outcomes. This paper contributes to the larger education community by defining the professional learning needs of educators who wish to integrate data into their STEM classrooms. These frameworks provide designers and researchers with touchpoints to structure and study PL experiences, lesson materials, and other classroom resources for both new and veteran educators. These tools can provide STEM teachers with guidance for reflecting on their current knowledge, skills, beliefs, and teaching practices that help their students become more data fluent.more » « less
-
Development of innovative curriculum materials is a mainstay strategy in research-driven classroom interventions and teacher professional development. Yet even when curricular materials are co-developed by teachers planning to implement the materials, they still must navigate the unique needs and constraints of their classrooms. This study explores differentiated enactment of a co-developed place-based middle school energy literacy unit. The unit uses the school building as a place-based resource to increase student awareness and understanding of fundamental energy concepts, impacts and interactions of natural and human-made energy systems, and considerations for energy efficient building features through engineering design. This multiple-case explores how five teachers across four middle schools in the same school district enacted the unit. Each teacher’s enactment was characterized using Coburn’s (2004) five levels, which are: rejection (materials not enacted), symbolic (materials implemented superficially), parallel structures (materials are implemented with existing practices), assimilation (adopts the materials but transforms materials to fit internal and external factors), and accommodation (enacts the materials with minor changes). We observed symbolic, assimilation, accommodation, and rejection across the teachers, with enactment modes varying across different phases of unit implementation. We analyzed interview and observational data for internal and external factors that shaped their implementation. Internal factors included opportunities for novel teaching and making connections to existing curriculum, activities, and/or practical knowledge. External factors included the presence, or absence, of building supports, inadequate class time, non-core class status, and COVID-19 policies. Internal factors generally supported teachers’ enactment of the materials, whereas external factors that could not be negotiated caused barriers to enactment. Our implications for this work include the importance of teacher support for new curriculum implementation.more » « less
An official website of the United States government

