Short-range ordering mechanics in FCC materials
Short-range order (SRO) has a crucial impact on the mechanical strength of metallic alloys. Recent atomistic investigations defined an average SRO and attempted to correlate it with the yield strength. We propose that the local change in SRO upon slip advance must dictate the strengthening, and we elaborate the methodology to establish the “SRO change” on a slip plane considering the Wigner-Seitz cell. The model captures the variation of lattice resistance (Critical Resolved Shear Stress; CRSS) in the crystal as the SRO changes depending on the probability of neighboring atoms. The methodology was applied to Ni-V binary alloys for a wide range of compositions and stacking fault widths. The complex variation of CRSS with compositional variations shows good agreement with limited experimental results.
more »
« less
- Award ID(s):
- 2125821
- PAR ID:
- 10509553
- Editor(s):
- NA
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- International Journal of Plasticity
- Volume:
- 174
- Issue:
- C
- ISSN:
- 0749-6419
- Page Range / eLocation ID:
- 103919
- Subject(s) / Keyword(s):
- Mechanics of Materials
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Simultaneously enhancing strength and ductility of metals and alloys has been a tremendous challenge. Here, we investigate a CoCuFeNiPd high-entropy alloy (HEA), using a combination of Monte Carlo method, molecular dynamic simulation, and density-functional theory calculation. Our results show that this HEA is energetically favorable to undergo short-range ordering (SRO), and the SRO leads to a pseudo-composite microstructure, which surprisingly enhances both the ultimate strength and ductility. The SRO-induced composite microstructure consists of three categories of clusters: face-center-cubic-preferred (FCCP) clusters, indifferent clusters, and body-center-cubic-preferred (BCCP) clusters, with the indifferent clusters playing the role of the matrix, the FCCP clusters serving as hard fillers to enhance the strength, while the BCCP clusters acting as soft fillers to increase the ductility. Our work highlights the importance of SRO in influencing the mechanical properties of HEAs and presents a fascinating route for designing HEAs to achieve superior mechanical properties.more » « less
-
Abstract The degree of short-range order (SRO) can influence the physical and mechanical properties of refractory multi-principal element alloys (RMPEAs). Here, the effect of SRO degree on the atomic configuration and properties of the equiatomic TiTaZr RMPEA is investigated using the first-principles calculations. Their key roles on the lattice parameters, binding energy, elastic properties, electronic structure, and stacking fault energy (SFE) are analyzed. The results show the degree of SRO has a significant effect on the physical and mechanical properties of TiTaZr. During the SRO degree increasing in TiTaZr lattice, the low SRO degree exacerbates the lattice distortion and the high SRO degree reduces the lattice distortion. The high degree of SRO improves the binding energy and elastic stiffness of the TiTaZr. By analyzing the change in charge density, this change is caused by the atomic bias generated during the formation of the SRO, which leading to a change in charge-density thereby affecting the metal bond polarity and inter-atomic forces. The high SRO degree also reduces SFE, which means the capability of plastic deformation of the TiTaZr is enhanced.more » « less
-
Application of polycrystalline hexagonal close packed (HCP) metals in engineering designs has been constrained by their anisotropic responses due to twinning and limited plasticity. In deformation, twins most often initiate at grain boundaries (GBs), and thicken and propagate across the grain. In this work, the GB twin embryos in Mg and Mg alloys, and the conditions that influence their propagation are investigated. Using a micromechanical crystal plasticity model, the role of embryo shape on the driving forces prevailing at the embryo boundaries that could support its expansion is studied. The modeled embryos are either planar, extending more in the shear direction than normal to the twin plane, or equiaxed. Results show that the thinner the embryo, the greater the driving forces for both thickening and forward propagation. Alloys with low prismatic-to-basal critical resolved shear stress (CRSS) ratios promote embryo thickening and large CRSS values for the slip mode that primarily accommodates the twin shear encourage propagation. The neighboring grains with orientations that enable local accommodation of the embryo twin shear by pyramidal slip promote forward propagation but have little effect on thickening. When two like embryos lie along the same GB, their paired interaction promotes forward propagation but hinders thickening.more » « less
-
Abstract The exceptional mechanical strength of medium/high-entropy alloys has been attributed to hardening in random solid solutions. Here, we evidence non-random chemical mixing in a CrCoNi alloy, resulting from short-range ordering. A data-mining approach of electron nanodiffraction enabled the study, which is assisted by neutron scattering, atom probe tomography, and diffraction simulation using first-principles theory models. Two samples, one homogenized and one heat-treated, are observed. In both samples, results reveal two types of short-range-order inside nanoclusters that minimize the Cr–Cr nearest neighbors (L12) or segregate Cr on alternating close-packed planes (L11). The L11is predominant in the homogenized sample, while the L12formation is promoted by heat-treatment, with the latter being accompanied by a dramatic change in dislocation-slip behavior. These findings uncover short-range order and the resulted chemical heterogeneities behind the mechanical strength in CrCoNi, providing general opportunities for atomistic-structure study in concentrated alloys for the design of strong and ductile materials.more » « less
An official website of the United States government

