skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: How Beginning Programmers and Code LLMs (Mis)read Each Other
Generative AI models, specifically large language models (LLMs), have made strides towards the long-standing goal of text-to-code generation. This progress has invited numerous studies of user interaction. However, less is known about the struggles and strategies of non-experts, for whom each step of the text-to-code problem presents challenges: describing their intent in natural language, evaluating the correctness of generated code, and editing prompts when the generated code is incorrect. This paper presents a large-scale controlled study of how 120 beginning coders across three academic institutions approach writing and editing prompts. A novel experimental design allows us to target specific steps in the text-to-code process and reveals that beginners struggle with writ- ing and editing prompts, even for problems at their skill level and when correctness is automatically determined. Our mixed-methods evaluation provides insight into student processes and perceptions with key implications for non-expert Code LLM use within and outside of education.  more » « less
Award ID(s):
2326175 2326173 2326174
PAR ID:
10509619
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400703300
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Location:
Honolulu HI USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent work has shown that prompting language models with code-like representations of natural language leads to performance improvements on structured reasoning tasks. However, such tasks comprise only a small subset of all natural language tasks. In our work, we seek to answer whether or not code-prompting is the preferred way of interacting with language models in general. We compare code and text prompts across three popular GPT models (davinci, code-davinci-002, and text-davinci-002) on a broader selection of tasks (e.g., QA, sentiment, summarization) and find that with few exceptions, code prompts do not consistently outperform text prompts. Furthermore, we show that the style of code prompt has a large effect on performance for some (but not all) tasks and that fine-tuning on text instructions leads to better relative performance of code prompts. 
    more » « less
  2. We present Prompt Diffusion, a framework for enabling in-context learning in diffusion-based generative models. Given a pair of task-specific example images, such as depth from/to image and scribble from/to image, and a text guidance, our model automatically understands the underlying task and performs the same task on a new query image following the text guidance. To achieve this, we propose a vision-language prompt that can model a wide range of vision-language tasks and a diffusion model that takes it as input. The diffusion model is trained jointly on six different tasks using these prompts. The resulting Prompt Diffusion model becomes the first diffusion-based vision-language foundation model capable of in-context learning. It demonstrates high-quality in-context generation for the trained tasks and effectively generalizes to new, unseen vision tasks using their respective prompts. Our model also shows compelling text-guided image editing results. Our framework aims to facilitate research into in-context learning for computer vision. We share our code and pre-trained models at https://github. com/Zhendong-Wang/Prompt-Diffusion. 
    more » « less
  3. Text-to-image generative models have achieved unprecedented success in generating high-quality images based on natural language descriptions. However, it is shown that these models tend to favor specific social groups when prompted with neutral text descriptions (e.g., ‘a photo of a lawyer’). Following Zhao et al. (2021), we study the effect on the diversity of the generated images when adding ethical intervention that supports equitable judgment (e.g., ‘if all individuals can be a lawyer irrespective of their gender’) in the input prompts. To this end, we introduce an Ethical NaTural Language Interventions in Text-to-Image GENeration (ENTIGEN) benchmark dataset to evaluate the change in image generations conditional on ethical interventions across three social axes – gender, skin color, and culture. Through CLIP-based and human evaluation on minDALL.E, DALL.E-mini and Stable Diffusion, we find that the model generations cover diverse social groups while preserving the image quality. In some cases, the generations would be anti-stereotypical (e.g., models tend to create images with individuals that are perceived as man when fed with prompts about makeup) in the presence of ethical intervention. Preliminary studies indicate that a large change in the model predictions is triggered by certain phrases such as ‘irrespective of gender’ in the context of gender bias in the ethical interventions. We release code and annotated data at https://github.com/Hritikbansal/entigen_emnlp. 
    more » « less
  4. Text-to-image models are enabling efficient design space exploration, rapidly generating images from text prompts. However, many generative AI tools are imperfect for product design applications as they are not built for the goals and requirements of product design. The unclear link between text input and image output further complicates their application. This work empirically investigates design space exploration strategies that can successfully yield product images that are feasible, novel and aesthetic – three common goals in product design. Specifically, users’ actions within the global and local editing modes, including their time spent, prompt length, mono versus multi-criteria prompts, and goal orientation of prompts, are analyzed. Key findings reveal the pivotal role of mono versus multi-criteria and goal orientation of prompts in achieving specific design goals over time and prompt length. The study recommends prioritizing the use of multi-criteria prompts for feasibility and novelty during global editing while favoring mono-criteria prompts for aesthetics during local editing. Overall, this article underscores the nuanced relationship between the AI-driven text-to-image models and their effectiveness in product design, urging designers to carefully structure prompts during different editing modes to better meet the unique demands of product design. 
    more » « less
  5. In geographical image segmentation, performance is often constrained by the limited availability of training data and a lack of generalizability, particularly for segmenting mobility infrastructure such as roads, sidewalks, and crosswalks. Vision foundation models like the Segment Anything Model (SAM), pre-trained on millions of natural images, have demonstrated impressive zero-shot segmentation performance, providing a potential solution. However, SAM struggles with geographical images, such as aerial and satellite imagery, due to its training being confined to natural images and the narrow features and textures of these objects blending into their surroundings. To address these challenges, we propose Geographical SAM (GeoSAM), a SAM-based framework that fine-tunes SAM using automatically generated multi-modal prompts. Specifically, GeoSAM integrates point prompts from a pre-trained task-specific model as primary visual guidance, and text prompts generated by a large language model as secondary semantic guidance, enabling the model to better capture both spatial structure and contextual meaning. GeoSAM outperforms existing approaches for mobility infrastructure segmentation in both familiar and completely unseen regions by at least 5% in mIoU, representing a significant leap in leveraging foundation models to segment mobility infrastructure, including both road and pedestrian infrastructure in geographical images. The source code is publicly available. 
    more » « less