This research employs a spatial optimization approach customized for addressing equitable emergency medical facility location problems through the p-dispersed-median problem (p-DIME). The p-DIME integrates two conflicting classes of spatial optimization problems, dispersion and median problems, aiming to identify the optimal locations for emergency medical facilities to achieve an equitable spatial distribution of emergency medical services (EMS) while effectively serving demand. To demonstrate the utility of the p-DIME model, we selected Gyeongsangbuk-do in South Korea, recognized as one of the most challenging areas for providing EMS to the elderly population (aged 65 and over). This challenge arises from the significant spatial disparity in the distribution of emergency medical facilities. The results of the model assessment gauge the spatial disparity of EMS, provide significantly enhanced solutions for a more equitable EMS distribution in terms of service coverage, and offer policy implications for future EMS location planning. In addition, to address the computational challenges posed by p-DIME’s inherent complexity, involving mixed-integer programming, this study introduces a solution technique through constraint formulations aimed at tightening the lower bounds of the problem’s solution space. The computational results confirm the effectiveness of this approach in ensuring reliable computational performance, with significant reductions in solution times, while still producing optimal solutions.
This content will become publicly available on March 1, 2025
Problem definition: Uncrewed aerial vehicles (UAVs) are transforming emergency service logistics applications across sectors, offering easy deployment and rapid response. In the context of emergency medical services (EMS), UAVs have the potential to augment ambulances by leveraging bystander assistance, thereby reducing response times for delivering urgent medical interventions and improving EMS outcomes. Notably, the use of UAVs for opioid overdose cases is particularly promising as it addresses the challenges faced by ambulances in delivering timely medication. This study aims to optimize the integration of UAVs and bystanders into EMS in order to minimize average response times for overdose interventions. Methodology/results: We formulate the joint operation of UAVs with ambulances through a Markov decision process that captures random emergency vehicle travel times and bystander availability. We apply an approximate dynamic programming approach to mitigate the solution challenges from high-dimensional state variables and complex decisions through a neural network-based approximation of the value functions (NN-API). To design the approximation, we construct a set of basis functions based on queueing and geographic properties of the UAV-augmented EMS system. Managerial implications: The simulation results suggest that our NN-API policy tends to outperform several noteworthy rule- and optimization-based benchmark policies in terms of accumulated rewards, particularly for situations that are primarily characterized by high request arrival rates and a limited number of available ambulances and UAVs. The results also demonstrate the benefits of incorporating UAVs into the EMS system and the effectiveness of an intelligent real-time operations strategy in addressing capacity shortages, which are often a problem in rural areas of the United States. Additionally, the results provide insights into specific contributions of each dispatching or redeployment strategy to overall performance improvement.
Funding: This work was supported by the National Science [Grant 1761022].
Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0166
more » « less- Award ID(s):
- 1761022
- PAR ID:
- 10509750
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- Manufacturing & Service Operations Management
- Volume:
- 26
- Issue:
- 2
- ISSN:
- 1523-4614
- Page Range / eLocation ID:
- 447 to 464
- Subject(s) / Keyword(s):
- approximate dynamic programming • large-scale MDP • uncrewed aerial vehicles • dispatching • simulation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Kainz, Wolfgang (Ed.)
-
Early detection and rapid intervention can prevent death from opioid overdose. At high doses, opioids (particularly fentanyl) can cause rapid cessation of breathing (apnea), hypoxemic/hypercarbic respiratory failure, and death, the physiologic sequence by which people commonly succumb from unintentional opioid overdose. We present algorithms that run on smartphones and unobtrusively detect opioid overdose events and their precursors. Our proof-of- concept contactless system converts the phone into a short-range active sonar using frequency shifts to identify respiratory depression, apnea, and gross motor movements associated with acute opioid toxicity. We develop algorithms and perform testing in two environments: (i) an approved supervised injection facility (SIF), where people self-inject illicit opioids, and (ii) the operating room (OR), where we simulate rapid, opioid-induced overdose events using routine induction of general anesthesia. In the SIF ( n = 209), our system identified postinjection, opioid-induced central apnea with 96% sensitivity and 98% specificity and identified respiratory depression with 87% sensitivity and 89% specificity. These two key events commonly precede fatal opioid overdose. In the OR, our algorithm identified 19 of 20 simulated overdose events. Given the reliable reversibility of acute opioid toxicity, smartphone-enabled overdose detection coupled with the ability to alert naloxone-equipped friends and family or emergency medical services (EMS) could hold potential as a low-barrier, harm reduction intervention.more » « less
-
Emergency medical services (EMS) teams are first responders providing urgent medical care to severely ill or injured patients in the field. Despite their criticality, EMS work is one of the very few medical domains with limited technical support. This paper describes a study conducted to examine technology opportunities for supporting EMS data work and decision-making. We transcribed and analyzed 25 simulation videos. Using the distributed cognition framework, we examined EMS teams' work practices that support information acquisition and sharing. Our results showed that EMS teams leveraged various mechanisms (e.g., verbal communication and external cognitive aids) to distribute cognitive labor in managing, collecting, and using patient data. However, we observed a set of prominent challenges in EMS data work, including lack of detailed documentation in real time, situation recall issues, situation awareness problems, and challenges in decision making and communication. Based on the results, we discuss implications for technology opportunities to support rapid information acquisition, integration, and sharing in time-critical, high-risk medical settings.more » « less
-
Emergency medical services (EMS) providers often face significant challenges in their work, including collecting, integrating, and making sense of a variety of information. Despite their criticality, EMS work is one of the very few medical domains with limited technical support. To design and implement effective decision support, it is essential to examine and gain a holistic understanding of the fine-grained process of sensemaking in the field. To that end, we reviewed 25 video recordings of EMS simulations to understand the nuances of EMS sensemaking work, including 1) the types of information and situation that are collected and made sense of in the field; 2) the work practices and temporal patterns of EMS sensemaking work; and 3) the challenges in EMS sensemaking and decision-making process. Based on the results, we discuss implications for technology opportunities to support rapid information acquisition and sensemaking in time-critical, high-risk medical settings such as EMS.more » « less
-
West, Brooke (Ed.)Objectives An Opioid Treatment Desert is an area with limited accessibility to medication-assisted treatment and recovery facilities for Opioid Use Disorder. We explored the concept of Opioid Treatment Deserts including racial differences in potential spatial accessibility and applied it to one Midwestern urban county using high resolution spatiotemporal data. Methods We obtained individual-level data from one Emergency Medical Services (EMS) agency (Columbus Fire Department) in Franklin County, Ohio. Opioid overdose events were based on EMS runs where naloxone was administered from 1/1/2013 to 12/31/2017. Potential spatial accessibility was measured as the time (in minutes) it would take an individual, who may decide to seek treatment after an opioid overdose, to travel from where they had the overdose event, which was a proxy measure of their residential location, to the nearest opioid use disorder (OUD) treatment provider that provided medically-assisted treatment (MAT). We estimated accessibility measures overall, by race and by four types of treatment providers (any type of MAT for OUD, Buprenorphine, Methadone, or Naltrexone). Areas were classified as an Opioid Treatment Desert if the estimate travel time to treatment provider (any type of MAT for OUD) was greater than a given threshold. We performed sensitivity analysis using a range of threshold values based on multiple modes of transportation (car and public transit) and using only EMS runs to home/residential location types. Results A total of 6,929 geocoded opioid overdose events based on data from EMS agencies were used in the final analysis. Most events occurred among 26–35 years old (34%), identified as White adults (56%) and male (62%). Median travel times and interquartile range (IQR) to closest treatment provider by car and public transit was 2 minutes (IQR: 3 minutes) and 17 minutes (IQR: 17 minutes), respectively. Several neighborhoods in the study area had limited accessibility to OUD treatment facilities and were classified as Opioid Treatment Deserts. Travel time by public transit for most treatment provider types and by car for Methadone-based treatment was significantly different between individuals who were identified as Black adults and White adults based on their race. Conclusions Disparities in access to opioid treatment exist at the sub-county level in specific neighborhoods and across racial groups in Columbus, Ohio and can be quantified and visualized using local public safety data (e.g., EMS runs). Identification of Opioid Treatment Deserts can aid multiple stakeholders better plan and allocate resources for more equitable access to MAT for OUD and, therefore, reduce the burden of the opioid epidemic while making better use of real-time public safety data to address a public health epidemic that has turned into a public safety crisis.more » « less