skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Migdal effect in semiconductors for dark matter with masses below ∼ 100 MeV
A<sc>bstract</sc> Dark matter scattering off a nucleus has a small probability of inducing an observable ionization through the inelastic excitation of an electron, called the Migdal effect. We use an effective field theory to extend the computation of the Migdal effect in semiconductors to regions of small momentum transfer to the nucleus, where the final state of the nucleus is no longer well described by a plane wave. Our analytical result can be fully quantified by the measurable dynamic structure factor of the semiconductor, which accounts for the vibrational degrees of freedom (phonons) in a crystal. We show that, due to the sum rules obeyed by the structure factor, the inclusive Migdal rate and the shape of the electron recoil spectrum is well captured by approximating the nuclei in the crystal as free ions; however, the exclusive differential rate with respect to energy depositions to the crystal depends on the phonon dynamics encoded in the dynamic structure function of the specific material. Our results now allow the Migdal effect in semiconductors to be evaluated even for the lightest dark matter candidates (mχ≳ 1 MeV) that can kinematically excite electrons.  more » « less
Award ID(s):
2210533
PAR ID:
10509762
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
JHEP
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
1
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In models of warm dark matter, there is an appreciable population of high momentum particles in the early universe, which free stream out of primordial over/under densities, thereby prohibiting the growth of structure on small length scales. The distance that a dark matter particle travels without obstruction, known as the free streaming length, depends on the particle's mass and momentum, but also on the cosmological expansion rate. In this way, measurements of the linear matter power spectrum serve to probe warm dark matter as well as the cosmological expansion history. In this work, we focus on ultra-light warm wave dark matter (WWDM) characterized by a typical comoving momentumq*and massm. We first derive constraints on the WWDM parameter space (q*,m) using Lyman-αforest observations due to a combination of the free-streaming effect and the white-noise effect. We next assess how the free streaming of WWDM is affected by three modified expansion histories: early matter domination, early dark energy, and very early dark energy. 
    more » « less
  2. A<sc>bstract</sc> Atomic dark matter is a simple but highly theoretically motivated possibility for an interacting dark sector that could constitute some or all of dark matter. We perform a comprehensive study of precision cosmological observables on minimal atomic dark matter, exploring for the first time the full parameter space of dark QED coupling and dark electron and proton masses (αD,$$ {m}_{e_D} $$ m e D ,$$ {m}_{p_D} $$ m p D ) as well as the two cosmological parameters of aDM mass fractionfDand temperature ratioξat time of SM recombination. We also show how aDM can accommodate the (H0, S8) tension from late-time measurements, leading to a better fit than ΛCDM or ΛCDM + dark radiation. Furthermore, including late-time measurements leads to closed contours of preferredξand dark hydrogen binding energy. The dark proton mass is seemingly unconstrained. Our results serve as an important new jumping-off point for future precision studies of atomic dark matter at non-linear and smaller scales. 
    more » « less
  3. A<sc>bstract</sc> We argue that the striking similarity between the cosmic abundances of baryons and dark matter, despite their very different astrophysical behavior, strongly motivates the scenario in which dark matter resides within a rich dark sector parallel in structure to that of the standard model. The near cosmic coincidence is then explained by an approximateℤ2exchange symmetry between the two sectors, where dark matter consists of stable dark neutrons, with matter and dark matter asymmetries arising via parallel WIMP baryogenesis mechanisms. Taking a top-down perspective, we point out that an adequateℤ2symmetry necessitates solving the electroweak hierarchy problem in each sector, without our committing to a specific implementation. A higher-dimensional realization in the far UV is presented, in which the hierarchical couplings of the two sectors and the requisiteℤ2-breaking structure arise naturally from extra-dimensional localization and gauge symmetries. We trace the cosmic history, paying attention to potential pitfalls not fully considered in previous literature. Residualℤ2-breaking can very plausibly give rise to the asymmetric reheating of the two sectors, needed to keep the cosmological abundance of relativistic dark particles below tight bounds. We show that, despite the need to keep inter-sector couplings highly suppressed after asymmetric reheating, there can naturally be order-one couplings mediated by TeV scale particles which can allow experimental probes of the dark sector at high energy colliders. Massive mediators can also induce dark matter direct detection signals, but likely at or below the neutrino floor. 
    more » « less
  4. Abstract We present an analysis of the Hα-emitting ionized gas in the warm phase of the NGC 253 outflow using integral field spectroscopy from the Multi Unit Spectroscopic Explorer. In each spaxel, we decompose Hα, [Nii], and [Sii] emission lines into a system of up to three Gaussian components, accounting for the velocity contributions due to the disk and both intercepted walls of an outflow cone. In the approaching southern lobe of the outflow, we find maximum deprojected outflow velocities down to ∼−500 km s−1. Velocity gradients of this outflowing gas range from ∼−350 to −550 km s−1kpc−1with increasing distance from the nucleus. Additionally, [Nii]/Hαand [Sii]/Hαintegrated line ratios are suggestive of shocks as the dominant ionization source throughout the wind. Electron densities, inferred from the [Sii] doublet, peak at 2100 cm−3near the nucleus and reach ≲50 cm−3in the wind. Finally, at an uncertainty of 0.3 dex on the inferred mass of 4 × 105M, the mass-outflow rate of the Hα-emitting gas in the southern outflow lobe is ∼0.4Myr−1. This yields a mass-loading factor ofη ∼ 0.1 and a ∼2% starburst energy efficiency. 
    more » « less
  5. Deep learning-based object detection algorithms enable the simultaneous classification and localization of any number of objects in image data. Many of these algorithms are capable of operating in real-time on high resolution images, attributing to their widespread usage across many fields. We present an end-to-end object detection pipeline designed for rare event searches for the Migdal effect, at real-time speeds, using high-resolution image data from the scientific CMOS camera readout of the MIGDAL experiment. The Migdal effect in nuclear scattering, critical for sub-GeV dark matter searches, has yet to be experimentally confirmed, making its detection a primary goal of the MIGDAL experiment. The Migdal effect forms a composite rare event signal topology consisting of an electronic and nuclear recoil sharing the same vertex. Crucially, both recoil species are commonly observed in isolation in the MIGDAL experiment, enabling us to train YOLOv8, a state-of-the-art object detection algorithm, on real data. Topologies indicative of the Migdal effect can then be identified in science data via pairs of neighboring or overlapping electron and nuclear recoils. Applying selections to real data that retain 99.7% signal acceptance in simulations, we demonstrate our pipeline to reduce a sample of 20 million recorded images to fewer than 1000 frames, thereby transforming a rare search into a much more manageable search. More broadly, we discuss the applicability of using object detection to enable data-driven machine learning training for other rare event search applications such as neutrinoless double beta decay searches and experiments imaging exotic nuclear decays. Published by the American Physical Society2025 
    more » « less