A<sc>bstract</sc> We demonstrate that the searches for dark sector particles can provide probes of reheating scenarios, focusing on the cosmic millicharge background produced in the early universe. We discuss two types of millicharge particles (mCPs): either with, or without, an accompanying dark photon. These two types of mCPs have distinct theoretical motivations and cosmological signatures. We discuss constraints from the overproduction and mCP-baryon interactions of the mCP without an accompanying dark photon, with different reheating temperatures. We also consider the ∆Neffconstraints on the mCPs from kinetic mixing, varying the reheating temperature. The regions of interest in which the accelerator and other experiments can probe the reheating scenarios are identified in this paper for both scenarios. These probes can potentially allow us to set an upper bound on the reheating temperature down to ~ 10 MeV, much lower than the previously considered upper bound from inflationary cosmology at around ~ 1016GeV. In addition, we derive a new “distinguishability condition”, in which the two mCP scenarios may be differentiated by combining cosmological and theoretical considerations. Finally, we discuss the implications of dedicated mCP searches, future CMB-S4 observations, and the target for experiments when considering the minimally allowed reheating temperature.
more »
« less
A closer look in the mirror: reflections on the matter/dark matter coincidence
A<sc>bstract</sc> We argue that the striking similarity between the cosmic abundances of baryons and dark matter, despite their very different astrophysical behavior, strongly motivates the scenario in which dark matter resides within a rich dark sector parallel in structure to that of the standard model. The near cosmic coincidence is then explained by an approximateℤ2exchange symmetry between the two sectors, where dark matter consists of stable dark neutrons, with matter and dark matter asymmetries arising via parallel WIMP baryogenesis mechanisms. Taking a top-down perspective, we point out that an adequateℤ2symmetry necessitates solving the electroweak hierarchy problem in each sector, without our committing to a specific implementation. A higher-dimensional realization in the far UV is presented, in which the hierarchical couplings of the two sectors and the requisiteℤ2-breaking structure arise naturally from extra-dimensional localization and gauge symmetries. We trace the cosmic history, paying attention to potential pitfalls not fully considered in previous literature. Residualℤ2-breaking can very plausibly give rise to the asymmetric reheating of the two sectors, needed to keep the cosmological abundance of relativistic dark particles below tight bounds. We show that, despite the need to keep inter-sector couplings highly suppressed after asymmetric reheating, there can naturally be order-one couplings mediated by TeV scale particles which can allow experimental probes of the dark sector at high energy colliders. Massive mediators can also induce dark matter direct detection signals, but likely at or below the neutrino floor.
more »
« less
- Award ID(s):
- 2210361
- PAR ID:
- 10599571
- Publisher / Repository:
- JHEP
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 6
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> Light dark matter particles may be produced in electron and positron beam dumps of the International Linear Collider (ILC). We propose an experimental setup to search for such events, the Beam-Dump eXperiment at the ILC (ILC-BDX). The setup consists of a muon shield placed behind the beam dump, followed by a multi-layer tracker and an electromagnetic calorimeter. The calorimeter can detect electron recoils due to elastic scattering of dark matter particles produced in the dump, while the tracker is sensitive to decays of excited dark-sector states into the dark matter particle. We study the production, decay and scattering of sub-GeV dark matter particles in this setup in several models with a dark photon mediator. Taking into account beam-related backgrounds due to neutrinos produced in the beam dump as well as the cosmic-ray background, we evaluate the sensitivity reach of the ILC-BDX experiment. We find that the ILC-BDX will be able to probe interesting regions of the model parameter space and, in many cases, reach well below the relic target.more » « less
-
A<sc>bstract</sc> In this paper we study a near-continuum dark matter model, in which dark sector consists of a tower of closely spaced states with weak-scale masses. We construct a five-dimensional model which naturally realizes this spectrum. The dark matter is described by a bulk field, which interacts with the brane-localized Standard Model sector via aZportal. We then study collider signatures of this model. Near-continuum dark matter states produced in a collider undergo cascade decays, resulting in events with high multiplicity of jets and leptons, large missing energy, and displaced vertices. A custom-built Monte Carlo tool described in this paper allows for detailed simulation of the signal events. We present results of such simulations for the case of electron-positron collisions.more » « less
-
A<sc>bstract</sc> Conformal Freeze-in (COFI) scenario postulates a dark sector described by a conformal field theory (CFT) at energies above the “gap scale” in the keV – MeV range. At the gap scale, the dark CFT undergoes confinement, and one of the resulting bound states is identified as the dark matter candidate. In this paper, we study this model in the context of the AdS/CFT correspondence with a focus on the mechanism of the infrared (IR) breaking of conformal invariance in the dark sector. We construct the holographic dual to the conformal dark sector, given by a Randall-Sundrum-like model in 5D, where the Standard Model (SM) fields and the dark matter candidate are placed on the ultraviolet (UV) and IR branes respectively. The separation between the UV and IR branes is stabilized by a bulk scalar field, naturally generating a hierarchy between the electroweak scale and the gap scale. We find that the parameter space of COFI comprises two distinct branches of CFT’s living on the Anti-de-Sitter (AdS) boundary, each corresponding to a different UV boundary condition. The two branches of CFT’s result in different radion potentials. The confinement of the CFT is dual to the spontaneous symmetry breaking by the 5D radion potential. We then use this dual 5D setup to study the cosmological confining phase transition in the dark sector. We find the viable parameter space of the theory which allows the phase transition to complete promptly without significant supercooling.more » « less
-
A variety of supergravity and string models involve hidden sectors where the hidden sectors may couple feebly with the visible sectors via a variety of portals. While the coupling of the hidden sector to the visible sector is feeble its coupling to the inflaton is largely unknown. It could couple feebly or with the same strength as the visible sector which would result in either a cold or a hot hidden sector at the end of reheating. These two possibilities could lead to significantly different outcomes for observables. We investigate the thermal evolution of the two sectors in a cosmologically consistent hidden sector dark matter model where the hidden sector and the visible sector are thermally coupled. Within this framework we analyze several phenomena to illustrate their dependence on the initial conditions. These include the allowed parameter space of models, dark matter relic density, proton-dark matter cross section, effective massless neutrino species at BBN time, self-interacting dark matter cross-section, where self-interaction occurs via exchange of dark photon, and Sommerfeld enhancement. Finally fits to the velocity dependence of dark matter cross sections from galaxy scales to the scale of galaxy clusters is given. The analysis indicates significant effects of the initial conditions on the observables listed above. The analysis is carried out within the framework where dark matter is constituted of dark fermions and the mediation between the visible and the hidden sector occurs via the exchange of dark photons. The techniques discussed here may have applications for a wider class of hidden sector models using different mediations between the visible and the hidden sectors to explore the impact of Big Bang initial conditions on observable physics.more » « less
An official website of the United States government

