skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pseudo-spin order of Wigner crystals in multi-valley electron gases
We study multi-valley electron gases in the low density (rs ≫ 1) limit. Here the ground-state is always a Wigner crystal (WC), with additional pseudo-spin order where the pseudo-spins are related to valley occupancies. Depending on the symmetries of the host semiconductor and the values of the parameters such as the anisotropy of the effective mass tensors, we find a striped or chiral pseudo-spin antiferromagnet, or a time-reversal symmetry breaking orbital loop-current ordered pseudo-spin ferromagnet. Our theory applies to the recently-discovered WC states in AlAs and in mono and bilayer transition metal dichalcogenides. We identify a set of interesting electronic liquid crystalline phases that could arise by continuous quantum melting of such WCs.  more » « less
Award ID(s):
2310312
PAR ID:
10509791
Author(s) / Creator(s):
; ;
Publisher / Repository:
Low Temperature Physics
Date Published:
Journal Name:
Low Temperature Physics
Volume:
49
Issue:
6
ISSN:
1063-777X
Page Range / eLocation ID:
679 to 700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Topological boundary modes in electronic and classical-wave systems exhibit fascinating properties. In photonics, topological nature of boundary modes can make them robust and endows them with an additional internal structure—pseudo-spins. Here, we introduce heterogeneous boundary modes, which are based on mixing two of the most widely used topological photonics platforms—the pseudo-spin–Hall-like and valley-Hall photonic topological insulators. We predict and confirm experimentally that transformation between the two, realized by altering the lattice geometry, enables a continuum of boundary states carrying both pseudo-spin and valley degrees of freedom (DoFs). When applied adiabatically, this leads to conversion between pseudo-spin and valley polarization. We show that such evolution gives rise to a geometrical phase associated with the synthetic gauge fields, which is confirmed via an Aharonov-Bohm type experiment on a silicon chip. Our results unveil a versatile approach to manipulating properties of topological photonic states and envision topological photonics as a powerful platform for devices based on synthetic DoFs. 
    more » « less
  2. Recent progress in the Valley Hall insulator has demonstrated a nontrivial topology property due to the distinct valley index in 2D semiconductor systems. In this work, we propose a highly tunable topological phase transition based on valley photonic crystals. The topological phase transition is realized by the inversion symmetry broken due to the refractive index change of structures consisting of optical phase change material (OPCM) with thermal excitation of different sites in a honeycomb lattice structure. Besides, simulations of light propagation at sharp corners and pseudo-spin photon coupling are conducted to quantitatively examine the topological protection. Compared with other electro-optical materials based on reconfigurable topological photonics, a wider bandwidth and greater tunability of both central bandgap frequency and topological phase transition can happen in the proposed scheme. Our platform has great potential in practical applications in lasing, light sensing, and high-contrast tunable optical filters. 
    more » « less
  3. Abstract The tuneability and control of quantum nanostructures in two-dimensional materials offer promising perspectives for their use in future electronics. It is hence necessary to analyze quantum transport in such nanostructures. Material properties such as a complex dispersion, topology, and charge carriers with multiple degrees of freedom, are appealing for novel device functionalities but complicate their theoretical description. Here, we study quantum tunnelling transport across a few-electron bilayer graphene quantum dot. We demonstrate how to uniquely identify single- and two-electron dot states’ orbital, spin, and valley composition from differential conductance in a finite magnetic field. Furthermore, we show that the transport features manifest splittings in the dot’s spin and valley multiplets induced by interactions and magnetic field (the latter splittings being a consequence of bilayer graphene’s Berry curvature). Our results elucidate spin- and valley-dependent tunnelling mechanisms and will help to utilize bilayer graphene quantum dots, e.g., as spin and valley qubits. 
    more » « less
  4. Abstract Valleytronics, harnessing the valley degree of freedom in the momentum space, is a potential energy‐efficient approach for information encoding, manipulation, and storage. Valley degree of freedom exists in a few conventional semiconductors, but recently the emerging 2D materials, such as monolayer transition‐metal dichalcogenides (TMDs), are considered more ideal for valleytronics, due to the additional protection from spin‐valley locking enabled by their inversion symmetry breaking and large spin‐orbit coupling. However, current limitations in the valley lifetime, operation temperature, and light‐valley conversion efficiency in existing materials encumber the practical applications of valleytronics. In this article, the valley depolarization mechanisms and recent progress of novel materials are systematically reviewed for valleytronics beyond TMDs. Valley physics is first reviewed and the factors determining the valley lifetime, including the intrinsic electron‐electron and electron‐lattice interactions, as well as extrinsic defect effects. Then, experimentally demonstrated and theoretically proposed valley materials are introduced which potentially improve valley properties through the changes of spin‐orbit coupling, electronic interactions, time‐reversal symmetry, structures, and defects. Finally, the challenges and perspectives are summarized to realize valleytronic devices in the future. 
    more » « less
  5. null (Ed.)
    Abstract Spin-valley locking in monolayer transition metal dichalcogenides has attracted enormous interest, since it offers potential for valleytronic and optoelectronic applications. Such an exotic electronic state has sparsely been seen in bulk materials. Here, we report spin-valley locking in a Dirac semimetal BaMnSb 2 . This is revealed by comprehensive studies using first principles calculations, tight-binding and effective model analyses, angle-resolved photoemission spectroscopy measurements. Moreover, this material also exhibits a stacked quantum Hall effect (QHE). The spin-valley degeneracy extracted from the QHE is close to 2. This result, together with the Landau level spin splitting, further confirms the spin-valley locking picture. In the extreme quantum limit, we also observed a plateau in the z -axis resistance, suggestive of a two-dimensional chiral surface state present in the quantum Hall state. These findings establish BaMnSb 2 as a rare platform for exploring coupled spin and valley physics in bulk single crystals and accessing 3D interacting topological states. 
    more » « less