This content will become publicly available on June 1, 2025
Powassan virus (POWV) is an emerging tick-borne encephalitic virus in Lyme disease-endemic sites in North America. Due to range expansion and local intensification of blacklegged tick vector (Ixodes scapularis) populations in the northeastern and upper midwestern U.S., human encephalitis cases are increasingly being reported. A better understanding of the transmission cycle between POWV and ticks is required in order to better predict and understand their public health burden. Recent phylogeographic analyses of POWV have identified geographical structuring, with well-defined northeastern and midwestern clades of the lineage II subtype. The extent that geographic and genetically defined sublineages differ in their ability to infect and be transmitted by blacklegged ticks is unclear. Accordingly, we determined whether there are strain-dependent differences in the transmission of POWV to ticks at multiple life stages. Five recent, low-passage POWV isolates were used to measure aspects of vector competence, using viremic and artificial infection methods. Infection rates in experimental ticks remained consistent between all five isolates tested, resulting in a 12–20% infection rate and some differences in viral load. We confirm that these differences are likely not due to differences in host viremia. Our results demonstrate that blacklegged ticks are susceptible to, and capable of transmitting, all tested strains and suggest that the tick–virus association is stable across diverse viral genotypes.
more » « less- Award ID(s):
- 2213854
- PAR ID:
- 10509802
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Viruses
- Volume:
- 16
- Issue:
- 6
- ISSN:
- 1999-4915
- Page Range / eLocation ID:
- 830
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Globally, zoonotic vector-borne diseases are on the rise and understanding their complex transmission cycles is pertinent to mitigating disease risk. In North America, Lyme disease is the most commonly reported vector-borne disease and is caused by transmission of Borrelia burgdorferi sensu lato (s.l.) from Ixodes spp. ticks to a diverse group of vertebrate hosts. Small mammal reservoir hosts are primarily responsible for maintenance of B. burgdorferi s.l. across the United States. Never- theless, birds can also be parasitized by ticks and are capable of infection with B. burgdorferi s.l. but their role in B. burgdorferi s.l. transmission dynamics is understudied. Birds could be important in both the maintenance and spread of B. burgdorferi s.l. and ticks because of their high mobility and shared habitat with important mammalian reservoir hosts. This study aims to better understand the role of avian hosts in tick-borne zoonotic disease transmission cycles in the western United States. We surveyed birds, mammals, and ticks at nine sites in northern California for B. burgdorferi s.l. infection and collected data on other metrics of host community composition such as abundance and diversity of birds, small mammals, lizards, predators, and ticks. We found 22.8% of birds infected with B. burgdorferi s.l. and that the likelihood of avian B. burgdorferi s.l. infection was significantly associated with local host community composition and pathogen prevalence in California. Addition- ally, we found an average tick burden of 0.22 ticks per bird across all species. Predator and lizard abundances were significant predictors of avian tick infestation. These results indicate that birds are relevant hosts in the local B. burgdorferi s.l. transmission cycle in the western United States and quantifying their role in the spread and maintenance of Lyme disease requires further research.more » « less
-
ika virus is an emerging arbovirus of humans in the western hemisphere. With its potential spread into new geographical areas, it is important to define the vector competence of native mosquito species. We tested the vector competency of Aedes vexans (Meigen) from the Lake Agassiz Plain of northwestern Minnesota and northeastern North Dakota. Aedes aegypti (L.) was used as a positive control for comparison. Mosquitoes were fed blood containing Zika virus and 2 wk later were tested for viral infection and dissemination. Aedes vexans (n = 60) were susceptible to midgut infection (28% infection rate) but displayed a fairly restrictive midgut escape barrier (3% dissemination rate). Cofed Ae. aegypti (n = 22) displayed significantly higher rates of midgut infection (61%) and dissemination (22%). To test virus transmission, mosquitoes were inoculated with virus and 16-17 d later, tested for their ability to transmit virus into fluid-filled capillary tubes. Unexpectedly, the transmission rate was significantly higher for Ae. vexans (34%, n = 47) than for Ae. aegypti (5%, n = 22). The overall transmission potential for Ae. vexans to transmit Zika virus was 1%. Because of its wide geographic distribution, often extreme abundance, and aggressive human biting activity, Ae. vexans could serve as a potential vector for Zika virus in northern latitudes where the conventional vectors, Ae. aegypti and Ae. albopictus Skuse, cannot survive. However, Zika virus is a primate virus and humans are the only amplifying host species in northern latitudes. To serve as a vector of Zika virus, Ae. vexans must feed repeatedly on humans. Defining the propensity of Ae. vexans to feed repeatedly on humans will be key to understanding its role as a potential vector of Zika virus.more » « less
-
Abstract Tick‐borne viruses cause thousands of cases of disease worldwide every year. Specific countermeasures to many tick‐borne viruses are not commercially available. Very little is known regarding tick‐virus interactions and increasing this knowledge can lead to potential targets for countermeasure development. Virus infection of ex vivo organ cultures from ticks can provide an approach to identify susceptible cell types of tissue to infection. Additionally, these organ cultures can be used for functional genomic studies to pinpoint tick‐specific genes involved in the virus lifecycle. Provided here are step‐by‐step procedures to set up basic tick organ cultures in combination with virus infection and/or functional genomic studies. These procedures can be adapted for future use to characterize other tick‐borne pathogen infections as well as tick‐specific biological processes. © 2020 Wiley Periodicals LLC.
Basic Protocol 1 : Loading 96‐well plates with gelfoam substrateBasic Protocol 2 : Step‐by‐step aseptic dissection of unfed female/maleIxodes scapularis ticks for multiple organsBasic Protocol 3 : Step‐by‐step aseptic dissection of fed femaleIxodes scapularis ticks to remove salivary glandsBasic Protocol 4 : Metabolic viability analyses of tick organ culturesBasic Protocol 5 : Virus infection of tick organ culturesBasic Protocol 6 : Functional RNA interference analyses using tick organ cultures -
1. Fluctuations in abundance of blacklegged ticks in space and time are well‐documented, but the extent to which populations fluctuate synchronously across habitat types is poorly understood. In oak forests, blacklegged tick density depends on small mammal abundance, which is in turn driven by fluctuations in acorn production. It is currently unknown whether fluctuations in tick abundance in oak forest, long understood to depend largely on masting events, are shared with nearby non‐oak forest.
2. In this study, we analysed 22 years of tick population data from nine forest plots in south‐eastern New York in order to compare fluctuations of nymphal and larval blacklegged tick populations in oak‐dominant forests and non‐oak forests.
3. We found that population peak densities of nymphal ticks were strongly synchronous in oak and non‐oak forests among years and that larval population dynamics were weakly synchronous between these two forest types.
4. Our results suggest that drivers of immature tick density in oak‐dominant forest, including climatic factors and mast‐driven host dynamics, may also influence tick population fluctuations in the surrounding landscape.
-
A vector's susceptibility and ability to transmit a pathogen—termed vector competency—determines disease outcomes, yet the ecological factors influencing tick vector competency remain largely unknown. Ixodes pacificus, the tick vector of Borrelia burgdorferi (Bb) in the western U.S., feeds on rodents, birds, and lizards. Rodents and birds are reservoirs for Bb and infect juvenile ticks, while lizards are refractory to Bb and cannot infect feeding ticks. Additionally, the lizard bloodmeal contains borreliacidal properties, clearing previously infected feeding ticks of their Bb infection. Despite I. pacificus feeding on a range of hosts, it is undetermined how the host identity of the larval bloodmeal affects future nymphal vector competency. We experimentally evaluate the influence of larval host bloodmeal on Bb acquisition by nymphal I. pacificus. Larval I. pacificus were fed on either lizards or mice and after molting, nymphs were fed on Bb-infected mice. We found that lizard-fed larvae were significantly more likely to become infected with Bb during their next bloodmeal than mouse-fed larvae. We also conducted the first RNA-seq analysis on whole-bodied I. pacificus and found significant upregulation of tick antioxidants and antimicrobial peptides in the lizard-fed group. Our results indicate that the lizard bloodmeal significantly alters vector competency and gene regulation in ticks, highlighting the importance of host bloodmeal identity in vector-borne disease transmission and upends prior notions about the role of lizards in Lyme disease community ecology.more » « less