Abstract Assuming the Riemann hypothesis, we prove estimates for the variance of the real and imaginary part of the logarithm of the Riemann zeta function in short intervals. We give three different formulations of these results. Assuming a conjecture of Chan for how often gaps between zeros can be close to a fixed non‐zero value, we prove a conjecture of Berry (1988) for the number variance of zeta zeros in the non‐universal regime. In this range, Gaussian unitary ensemble statistics do not describe the distribution of the zeros. We also calculate lower order terms in the second moment of the logarithm of the modulus of the Riemann zeta function on the critical line. Assuming Montgomery's pair correlation conjecture, this establishes a special case of a conjecture of Keating and Snaith (2000).
more »
« less
Zero-free regions near a line
We analyze metrics for how close an entire function of genus one is to having only real roots. These metrics arise from truncated Hankel matrix positivity-type conditions built from power series coefficients at each real point. Specifically, if such a function satisfies our positivity conditions and has well-spaced zeros, we show that all of its zeros have to (in some explicitly quantified sense) be far away from the real axis. The obvious interesting example arises from the Riemann zeta function, where our positivity conditions yield a family of relaxations of the Riemann hypothesis. One might guess that as we tighten our relaxation, the zeros of the zeta function must be close to the critical line. We show that the opposite occurs: any poten- tial non-real zeros are forced to be farther and farther away from the critical line.
more »
« less
- Award ID(s):
- 2000088
- PAR ID:
- 10509853
- Publisher / Repository:
- Mathematische Zeitschrift
- Date Published:
- Journal Name:
- Mathematische Zeitschrift
- Volume:
- 305
- Issue:
- 3
- ISSN:
- 0025-5874
- Subject(s) / Keyword(s):
- Zero-free regions entire functions of finite order Laguerre- Polya class
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We obtain conditional upper bounds for negative discrete moments of the derivative of the Riemann zeta‐function averaged over a subfamily of zeros of the zeta function that is expected to be arbitrarily close to full density inside the set of all zeros. For , our bounds for the ‐th moments are expected to be almost optimal. Assuming a conjecture about the maximum size of the argument of the zeta function on the critical line, we obtain upper bounds for these negative moments of the same strength while summing over a larger subfamily of zeta zeros.more » « less
-
Assuming the Riemann Hypothesis (RH), Montgomery proved a theorem concerning pair correlation of zeros of the Riemann zeta-function. One consequence of this theorem is that, assuming RH, at least 67.9% of the nontrivial zeros are simple. Here we obtain an unconditional form of Montgomery’s theorem and show how to apply it to prove the following result on simple zeros: If all the zeros ρ=β+iγ of the Riemann zeta-function such that T3/8<γ≤T satisfy ∣∣β−1/2∣∣<1/(2logT), then, as T tends to infinity, at least 61.7% of these zeros are simple. The method of proof neither requires nor provides any information on whether any of these zeros are or are not on the critical line where β=1/2. We also obtain the same result under the weaker assumption of a strong zero-density hypothesis.more » « less
-
The Alternative Hypothesis (AH) concerns a hypothetical and unlikely picture of how zeros of the Riemann zeta function are spaced, which one would like to rule out. In the Alternative Hypothesis, the renormalized distance between non-trivial zeros is supposed to always lie at a half integer. It is known that the Alternative Hypothesis is compatible with what is known about the pair correlation function of zeta zeros. We ask whether what is currently known about higher correlation functionsof the zeros is sufficient to rule out the Alternative Hypothesis and show by construction of an explicit counterexample point process that it is not. A similar result was recently independently obtained by Tao, using slightly different methods. We also apply the ergodic theorem to this point process to show there exists a deterministic collection of points lying in 1/2 Z, which satisfy the Alternative Hypothesis spacing, but mimic the local statistics that are currently known about zeros of the zeta function.more » « less
-
Draganov, B; Ivanov, K; Nikolov, G; Uluchev, R (Ed.)nspired by a result of Soundararajan, assuming the Riemann hypothesis (RH), we prove a new inequality for the logarithm of the modulus of the Riemann zeta-function on the critical line in terms of a Dirichlet polynomial over primes and prime powers. Our proof uses the Guinand-Weil explicit formula in conjunction with extremal one-sided bandlimited approximations for the Poisson kernel. As an application, by carefully estimating the Dirichlet polynomial, we revisit a 100-year-old estimate of Littlewood and give a slight refinement of the sharpest known upper bound (due to Chandee and Soundararajan) for the modulus of the zeta function on the critical line assuming RH, by providing explicit lower-order terms.more » « less
An official website of the United States government

