Rechargeable aqueous batteries with Zn2+as a working‐ion are promising candidates for grid‐scale energy storage because of their intrinsic safety, low‐cost, and high energy‐intensity. However, suitable cathode materials with excellent Zn2+‐storage cyclability must be found in order for Zinc‐ion batteries (ZIBs) to find practical applications. Herein, NaCa0.6V6O16·3H2O (NaCaVO) barnesite nanobelts are reported as an ultra‐stable ZIB cathode material. The original capacity reaches 347 mAh g−1at 0.1 A g−1, and the capacity retention rate is 94% after 2000 cycles at 2 A g−1and 83% after 10 000 cycles at 5 A g−1, respectively. Through a combined theoretical and experimental approach, it is discovered that the unique V3O8layered structure in NaCaVO is energetically favorable for Zn2+diffusion and the structural water situated between V3O8layers promotes a fast charge‐transfer and bulk migration of Zn2+by enlarging gallery spacing and providing more Zn‐ion storage sites. It is also found that Na+and Ca2+alternately suited in V3O8layers are the essential stabilizers for the layered structure, which play a crucial role in retaining long‐term cycling stability.
This content will become publicly available on February 1, 2025
Aqueous zinc‐ion batteries are promising alternatives to lithium‐ion batteries due to their cost‐effectiveness and improved safety. However, several challenges, including corrosion, dendrites, and water decomposition at the Zn anode, hinder their performance. Herein, an approach is proposed, that deviates from the conventional design by adding water into a propylene carbonate‐based organic electrolyte to prepare a non‐flammable “water‐in‐organic” electrolyte. The chaotropic salt Zn(ClO4)2exploits the Hofmeister effect to promote the miscibility of immiscible liquid phases. Interactions between propylene carbonate and water restrict water activity and mitigate unfavorable reactions. This electrolyte facilitates preferential Zn (002) deposition and the formation of solid electrolyte interphase. Consequently, the “water‐in‐organic” electrolyte achieves a 99.5% Coulombic efficiency at 1 mA cm−2over 1000 cycles in Zn/Cu cells, and constant cycling over 1000 h in Zn/Zn symmetric cells. A Na0.33V2O5/Zn battery exhibits impressive cycling stability with a capacity of 175 mAh g−1for 800 cycles at 2 A g−1. Additionally, this electrolyte enables sustainable cycling across a wide temperature range from −20 to 50 °C. The design of a “water‐in‐organic” electrolyte employing a chaotropic salt presents a potential strategy for high‐performance electrolytes in zinc‐ion batteries with a large stability window and a wide temperature range.
more » « less- Award ID(s):
- 1720595
- PAR ID:
- 10509911
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 34
- Issue:
- 9
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The poor reversibility of Zn metal anodes arising from water‐induced parasitic reactions poses a significant challenge to the practical applications of aqueous zinc‐ion batteries (AZIBs). Herein, a novel quasi‐solid‐state “water‐in‐swelling‐clay” electrolyte (WiSCE) containing zinc sulfate and swelling clay, bentonite (BT), is designed to enable highly reversible Zn metal anodes. AZIB full cells based on the WiSCE exhibit excellent cyclic stability at various current densities, long shelf life, low self‐discharge rate, and outstanding high‐temperature adaptability. Particularly, the capacity of WiSCE‐based AZIB full cells retains 90.47% after 200 cycles at 0.1 A g−1, 96.64% after 2000 cycles at 1 A g−1, and 88.29% after 5000 cycles at 3 A g−1. Detailed density functional theory calculations show that strong hydrogen bonds are formed between BT and water molecules in the WiSCE. Thus, water molecules are strongly confined by BT, particularly within the interlayers, which significantly inhibits water‐induced parasitic reactions and greatly improves cyclic stability. Compared to the state‐of‐the‐art “water‐in‐salt” electrolytes, the WiSCE can provide a significantly higher capacity at the full‐cell level with a substantially reduced cost, which is promising for the design of next‐generation high‐performance AZIBs. This work provides a new direction for developing cost‐competitive AZIBs as alternatives to grid‐scale energy storage.
-
Abstract Tetrabutylammonium (TBA) salt of hexacyano‐substituted cyclopropane dianion (Cp(CN)62−) is prepared through a facile two‐step synthetic protocol from commercially available materials and fully characterized as a high‐voltage
n ‐type organic cathode in rechargeable aqueous zinc‐ion batteries (AZIBs). The addition of tetrabutylammonium triflate (TBAOTf) to the electrolyte mitigates dissolution issues, leading to enhanced cycling stability. Remarkably, the Cp(CN)62−cathode demonstrates a high discharge voltage of 1.43 V in AZIBs and retains 85% of its capacity after 1000 cycles at a high loading of 10 mg cm−2and a cycling rate of 10C . These results, combined with spectroscopic analyses, elucidate a reversible two‐electron redox process of Cp(CN)62−facilitated by the insertion/de‐insertion of TBA cation. These findings underscore the potential of Cp(CN)62−as a conversion‐basedn ‐type cathode in energy storage applications. -
Abstract Aqueous dual‐ion batteries (DIBs) are promising for large‐scale energy storage due to low cost and inherent safety. However, DIBs are limited by low capacity and poor cycling of cathode materials and the challenge of electrolyte decomposition. In this study, a new cathode material of nitrogen‐doped microcrystalline graphene‐like carbon is investigated in a water‐in‐salt electrolyte of 30 m ZnCl2, where this carbon cathode stores anions reversibly via both electrical double layer adsorption and ion insertion. The (de)insertion of anions in carbon lattice delivers a high‐potential plateau at 1.85 V versus Zn2+/Zn, contributing nearly 1/3 of the capacity of 134 mAh g−1and half of the stored energy. This study shows that both the unique carbon structure and concentrated ZnCl2electrolyte play critical roles in allowing anion storage in carbon cathode for this aqueous DIB.
-
Abstract Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases at the Zn metal/liquid electrolyte interface, composed of an ion-oligomer complex. In Zn||Zn symmetric cell studies, we report highly reversible cycling at high current densities and capacities (e.g., 160 mA cm −2 ; 2.6 mAh cm −2 ). By means of quartz-crystal microbalance, nuclear magnetic resonance, and voltammetry measurements we show that the interphase film exists in a dynamic equilibrium with oligomers dissolved in the electrolyte. The interphase strategy is applied to aqueous Zn||I 2 and Zn||MnO 2 cells that are charged/discharged for 12,000 cycles and 1000 cycles, respectively, at a current density of 160 mA cm −2 and capacity of approximately 0.85 mAh cm −2 . Finally, we demonstrate that Zn||I 2 -carbon pouch cells (9 cm 2 area) cycle stably and deliver a specific energy of 151 Wh/kg (based on the total mass of active materials in the electrode) at a charge current density of 56 mA cm −2 .more » « less