We test a newly developed instrument prototype which utilizes time-resolved chlorophyll- a fluorescence techniques and fluctuating light to characterize Symbiodiniaceae functional traits across seven different coral species under cultivation as part of ongoing restoration efforts in the Florida Keys. While traditional chlorophyll- a fluorescence techniques only provide a handful of algal biometrics, the system and protocol we have developed generates > 1000 dynamic measurements in a short (~11 min) time frame. Resulting ‘high-content’ algal biometric data revealed distinct phenotypes, which broadly corresponded to genus-level Symbiodiniaceae designations determined using quantitative PCR. Next, algal biometric data from Acropora cervicornis (10 genotypes) and A. palmata (5 genotypes) coral fragments was correlated with bleaching response metrics collected after a two month-long exposure to high temperature. A network analysis identified 1973 correlations (Spearman R > 0.5) between algal biometrics and various bleaching response metrics. These identified biomarkers of thermal stress were then utilized to train a predictive model, and when tested against the same A. cervicornis and A. palmata coral fragments, yielded high correlation (R = 0.92) with measured thermal response (reductions in absorbance by chlorophyll-a). When applied to all seven coral species, the model ranked fragments dominated by Cladocopium or Breviolum symbionts as more bleaching susceptible than corals harboring thermally tolerant symbionts ( Durusdinium ). While direct testing of bleaching predictions on novel genotypes is still needed, our device and modeling pipeline may help broaden the scalability of existing approaches for determining thermal tolerance in reef corals. Our instrument prototype and analytical pipeline aligns with recent coral restoration assessments that call for the development of novel tools for improving scalability of coral restoration programs.
more »
« less
Use of predator exclusion cages to enhance Orbicella faveolata micro-fragment survivorship and growth during restoration
As coral reefs face increasing threats from a variety of stressors, coral restoration has become an important tool to aid coral populations. A novel strategy for restoring boulder corals is microfragmentation, which may enhance coral growth by at least five times, depending on species and conditions. However, mortality rates are still significant during the early weeks after transplanting microfragments to impacted areas. We examined the effects of predation after transplanting fragments by cagingOrbicella faveolatamicrofragments and testing if field survival rates would increase after an acclimation period. We tracked the health and growth of ten genotypes across different acclimation periods from a control group of no acclimation (0 months) to full acclimation (4 months). After four months, we presented a mix of acclimated and unacclimated corals to reef predators. Coral survivorship was highest in acclimation cages (near 100%) compared to the field (p < 0.001), with significant growth differences across genotypes (p < 0.001). Microfragments also grew more in acclimation cages (p < 0.001), with rates slowing down in the first two months after being planted into the substrate. Microfragments that had been acclimated for longer than one month also showed comparatively higher survival rates, further supporting the importance of acclimation during restoration. These results suggest caging fragments boost coral survival during initial stages of restoration by > 50% and increase the persistence of transplanted fragments. Results also highlight the importance of identifying and prioritizing genotypes with high survival and growth rates. Beyond coral restoration, results demonstrate the possible negative ecological effects of corallivores, particularly parrotfishes, on recent transplants of fragments.
more »
« less
- Award ID(s):
- 2032919
- PAR ID:
- 10510043
- Publisher / Repository:
- Frontiers in Marine Science
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 10
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ocean warming is killing corals, but heat-tolerant populations exist; if protected, they could replenish affected reefs naturally or through restoration. Palau’s Rock Islands experience consistently higher temperatures and extreme heatwaves, yet their diverse coral communities bleach less than those on Palau’s cooler outer reefs. Here, we combined genetic analyses, bleaching histories and growth rates of Porites cf. lobata colonies to identify thermally tolerant genotypes, map their distribution, and investigate potential growth trade-offs. We identified four genetic lineages of P . cf. lobata . On Palau’s outer reefs, a thermally sensitive lineage dominates. The Rock Islands harbor two lineages with enhanced thermal tolerance; one of which shows no consistent growth trade-off and also occurs on several outer reefs. This suggests that the Rock Islands provide naturally tolerant larvae to neighboring areas. Finding and protecting such sources of thermally-tolerant corals is key to reef survival under 21 st century climate change.more » « less
-
Effective coral restoration must include comprehensive investigations of the targeted coral community that consider all aspects of the coral holobiont—the coral host, symbiotic algae, and microbiome. For example, the richness and composition of microorganisms associated with corals may be indicative of the corals’ health status and thus help guide restoration activities. Potential differences in microbiomes of restoration corals due to differences in host genetics, environmental condition, or geographic location, may then influence outplant success. The objective of the present study was to characterize and compare the microbiomes of apparently healthy Acropora cervicornis genotypes that were originally collected from environmentally distinct regions of Florida’s Coral Reef and sampled after residing within Mote Marine Laboratory’s in situ nursery near Looe Key, FL (USA) for multiple years. By using 16S rRNA high-throughput sequencing, we described the microbial communities of 74 A. cervicornis genotypes originating from the Lower Florida Keys ( n = 40 genotypes), the Middle Florida Keys ( n = 15 genotypes), and the Upper Florida Keys ( n = 19 genotypes). Our findings demonstrated that the bacterial communities of A. cervicornis originating from the Lower Keys were significantly different from the bacterial communities of those originating from the Upper and Middle Keys even after these corals were held within the same common garden nursery for an average of 3.4 years. However, the bacterial communities of corals originating in the Upper Keys were not significantly different from those in the Middle Keys. The majority of the genotypes, regardless of collection region, were dominated by Alphaproteobacteria, namely an obligate intracellular parasite of the genus Ca. Aquarickettsia . Genotypes from the Upper and Middle Keys also had high relative abundances of Spirochaeta bacteria. Several genotypes originating from both the Lower and Upper Keys had lower abundances of Aquarickettsia , resulting in significantly higher species richness and diversity. Low abundance of Aquarickettsia has been previously identified as a signature of disease resistance. While the low- Aquarickettsia corals from both the Upper and Lower Keys had high abundances of an unclassified Proteobacteria, the genotypes in the Upper Keys were also dominated by Spirochaeta . The results of this study suggest that the abundance of Aquarickettsia and Spirochaeta may play an important role in distinguishing bacterial communities among A. cervicornis populations and compositional differences of these bacterial communities may be driven by regional processes that are influenced by both the environmental history and genetic relatedness of the host. Additionally, the high microbial diversity of low- Aquarickettsia genotypes may provide resilience to their hosts, and these genotypes may be a potential resource for restoration practices and management.more » « less
-
Abstract Understanding how foundation species recover from disturbances is key for predicting the future of ecosystems in the Anthropocene. Coral reefs are dynamic ecosystems that can undergo rapid declines in coral abundance following disturbances. Understanding why some reefs recover quickly from these disturbances whereas others recover slowly (or not at all) gives insight into the drivers of community resilience. From 2006 to 2010 coral reefs on the fore reef of Moorea, French Polynesia, experienced severe disturbances that reduced coral cover from ~46% in 2005 to <1% in 2010. Following these disturbances, coral cover increased from 2010 to 2018. Although there was a rapid and widespread recovery of corals, reefs at 17 m depth recovered more slowly than reefs at 10 m depth. We investigated the drivers of different rates of coral recovery between depths from 2010 to 2018 using a combination of time‐series data on coral recruitment, density, growth, and mortality in addition to field experiments testing for the effects of predation. Propagule abundance did not influence recovery, as the density of coral recruits (spat <6 months old) did not differ between depths. However, mortality of juvenile corals (≤5 cm diameter) was higher at 17 m, leading to densities of juvenile corals 3.5 times higher at 10 m than at 17 m depth. Yet, there were no differences in the growth of corals between depths. These results point to an early life stage bottleneck after settlement, resulting in greater mortality at 17 m than at 10 m as the likely driver of differential coral recovery between depths. We used experiments and time‐series data to test mechanisms that could drive different rates of juvenile coral mortality across depths, including differences in predation, competition, and the availability of suitable substratum. The results of these experiments suggested that increased coral mortality at 17 m may have been influenced by higher intensity of fish predation, and higher mortality of corals attached to unfavorable substratum. In contrast, the abundance of macroalgae, a coral competitor, did not explain differences in coral survival. Our work suggests that top‐down processes and substratum quality can create bottlenecks in corals that can drive rates of coral recovery after disturbance.more » « less
-
Voolstra, Christian R. (Ed.)Widespread mapping of coral thermal resilience is essential for developing effective management strategies and requires replicable and rapid multi-location assays of heat resistance and recovery. One- or two-day short-term heat stress experiments have been previously employed to assess heat resistance, followed by single assays of bleaching condition. We tested the reliability of short-term heat stress resistance, and linked resistance and recovery assays, by monitoring the phenotypic response of fragments from 101Acropora hyacinthuscolonies located in Palau (Micronesia) to short-term heat stress. Following short-term heat stress, bleaching and mortality were recorded after 16 hours, daily for seven days, and after one and two months of recovery. To follow corals over time, we utilized a qualitative, non-destructive visual bleaching score metric that correlated with standard symbiont retention assays. The bleaching state of coral fragments 16 hours post-heat stress was highly indicative of their state over the next 7 days, suggesting that symbiont population sizes within corals may quickly stabilize post-heat stress. Bleaching 16 hours post-heat stress predicted likelihood of mortality over the subsequent 3–5 days, after which there was little additional mortality. Together, bleaching and mortality suggested that rapid assays of the phenotypic response following short-term heat stress were good metrics of the total heat treatment effect. Additionally, our data confirm geographic patterns of intraspecific variation in Palau and show that bleaching severity among colonies was highly correlated with mortality over the first week post-stress. We found high survival (98%) and visible recovery (100%) two months after heat stress among coral fragments that survived the first week post-stress. These findings help simplify rapid, widespread surveys of heat sensitivity inAcropora hyacinthusby showing that standardized short-term experiments can be confidently assayed after 16 hours, and that bleaching sensitivity may be linked to subsequent survival using experimental assessments.more » « less