skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uranium-series and strontium isotope systematics in soil carbonates from dryland Critical Zones: Implications for soil inorganic carbon storage and transformation
Award ID(s):
1853680 2012475 2025166 2034312 2228180
PAR ID:
10510084
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Geochimica et Cosmochimica Acta
ISSN:
0016-7037
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of the New Hampshire Soil Sensor Network is to examine spatial and temporal changes in soil properties and processes as the climate changes. Data collected can also calibrate and validate models that examine how ecosystems may respond to changing climate and land use. To determine how soil processes are affected by climate change and land management, this soil sensor network measures snow depth, air temperature, soil temperature, soil volumetric water content, and soil electrical conductivity, as well as soil CO2 fluxes. This data package includes data from the air temperature, soil temperature, soil volumetric water content, and electrical conductivity sensors. Data were collected at the following sites: BRT = Bartlett Experimental Forest, Bartlett, NH; BDF = Burley-Demmerit Farm, Lee, NH; DCF = Dowst Cate Forest, Deerfield, NH; HUB = Hubbard Brook Experimental Forest, Woodstock, NH; SBM = Saddleback Mountain, Deerfield, NH; THF = Thompson Farm, Durham, NH; and Trout Pond Brook, Strafford, NH. 
    more » « less
  2. Abstract Long‐term soil warming can decrease soil organic matter (SOM), resulting in self‐reinforcing feedback to the global climate system. We investigated additional consequences of SOM reduction for soil water holding capacity (WHC) and soil thermal and hydrological buffering. At a long‐term soil warming experiment in a temperate forest in the northeastern United States, we suspended the warming treatment for 104 days during the summer of 2017. The formerly heated plot remained warmer (+0.39 °C) and drier (−0.024 cm3H2O cm−3soil) than the control plot throughout the suspension. We measured decreased SOM content (−0.184 g SOM g−1for O horizon soil, −0.010 g SOM g−1for A horizon soil) and WHC (−0.82 g H2O g−1for O horizon soil, −0.18 g H2O g−1for A horizon soil) in the formerly heated plot relative to the control plot. Reduced SOM content accounted for 62% of the WHC reduction in the O horizon and 22% in the A horizon. We investigated differences in SOM composition as a possible explanation for the remaining reductions with Fourier transform infrared (FTIR) spectra. We found FTIR spectra that correlated more strongly with WHC than SOM, but those particular spectra did not differ between the heated and control plots, suggesting that SOM composition affects WHC but does not explain treatment differences in this study. We conclude that SOM reductions due to soil warming can reduce WHC and hydrological and thermal buffering, further warming soil and decreasing SOM. This feedback may operate in parallel, and perhaps synergistically, with carbon cycle feedbacks to climate change. 
    more » « less
  3. null (Ed.)
  4. Abstract Monitoring soil nitrogen (N) dynamics in agroecosystems is foundational to soil health management and is critical for maximizing crop productivity in contrasting management systems. The newly established soil health indicator, autoclaved‐citrate extractable (ACE) protein, measures an organically bound pool of N. However, the relationship between ACE protein and other N‐related soil health indicators is poorly understood. In this study, ACE protein is investigated in relation to other soil N measures at four timepoints across a single growing season along a 33‐year‐old replicated eight‐system management intensity gradient located in southwest Michigan, USA. On average, polyculture perennial systems that promote soil health had two to four times higher (2–12 g kg−1higher) ACE protein concentrations compared to annual cropping and monoculture perennial systems. In addition, ACE protein fluctuated less than total soil N, NH4+‐N, and NO3‐N across the growing season, which shows the potential for ACE protein to serve as a reliable indicator of soil health and soil organic N status. Furthermore, ACE protein was positively correlated with total soil N and NH4+‐N and negatively correlated with NO3‐N at individual sampling timepoints across the management intensity gradient. In addition, ACE protein, measured toward the end of the growing season, showed a consistent and positive trend with yield across different systems. This study highlights the potential for ACE protein as an indicator of sustainable management practices, SOM cycling, and soil health and calls for more studies investigating its relationship with crop productivity. 
    more » « less