The goal of the New Hampshire Soil Sensor Network is to examine spatial and temporal changes in soil properties and processes as the climate changes. Data collected can also calibrate and validate models that examine how ecosystems may respond to changing climate and land use. To determine how soil processes are affected by climate change and land management, this soil sensor network measures snow depth, air temperature, soil temperature, soil volumetric water content, and soil electrical conductivity, as well as soil CO2 fluxes. This data package includes data from the air temperature, soil temperature, soil volumetric water content, and electrical conductivity sensors. Data were collected at the following sites: BRT = Bartlett Experimental Forest, Bartlett, NH; BDF = Burley-Demmerit Farm, Lee, NH; DCF = Dowst Cate Forest, Deerfield, NH; HUB = Hubbard Brook Experimental Forest, Woodstock, NH; SBM = Saddleback Mountain, Deerfield, NH; THF = Thompson Farm, Durham, NH; and Trout Pond Brook, Strafford, NH.
more »
« less
Uranium-series and strontium isotope systematics in soil carbonates from dryland Critical Zones: Implications for soil inorganic carbon storage and transformation
More Like this
-
-
Abstract Predators can alter the movement of nutrients through ecosystems by depositing waste products following predation. Whilst the benefits of predator waste for large predators (e.g. bears) or dense accumulations of predators (e.g. seabirds on islands) seem clear, less is known about whether smaller, solitary predators can have measurable effects on local ecosystem processes.In separate experiments with web‐building and wandering spiders, we tested if the presence of predators affected soil nutrient content, soil respiration, soil microbial communities, and plant growth.In the first experiment with black widow spiders, total nitrogen and nitrate were not affected by spider presence, but ammonia and phosphorus were higher from soil under the edge of the spider web than soil away from the spider. Soil respiration and plant growth were both higher in soil collected from under the spider retreat compared with soil collected away from the spider web.In a second experiment with wolf spiders, we tested for interactions between spiders and soil microbial communities. There were positive effects of wolf spider presence on all soil nutrients and there were interactions between spiders and soil type (i.e. field‐collected versus autoclaved) for total carbon, total nitrogen, nitrate, and pH. Spider presence and soil type also affected soil respiration and spider presence had a large effect on the composition of the microbial community of the soil. There were also positive effects of wolf spider presence on plant biomass and plant height, with a significant interaction between spiders and soil type for plant height.Overall, our results show that two spiders with different life histories (i.e. web‐building and wandering) both have significant positive effects on plant growth through the deposition of their waste products. These effects may occur through the direct deposition of nutrients and changes in soil microbial communities. Although, further work is needed to resolve these interactions. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
An official website of the United States government

