skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A One-Dimensional Symmetric-Force-Based Blending Method for Atomistic-to-Continuum Coupling
Inspired by the blending method developed by [P. Seleson, S. Beneddine, and S. Prudhome, A Force-Based Coupling Scheme for Peridynamics and Classical Elasticity, (2013)] for the nonlocal-to-local coupling, we create a symmetric and consistent blended force-based atomistic-to-continuum (a/c) scheme for the atomistic chain in one-dimensional space. The conditions for the well-posedness of the underlying model are established by analyzing an optimal blending size and blending type to ensure the H1{\$$}{\$$}H^1{\$$}{\$$}semi-norm stability for the blended force-based operator. We present several numerical experiments to test and confirm the theoretical findings.  more » « less
Award ID(s):
1847770
PAR ID:
10510147
Author(s) / Creator(s):
;
Editor(s):
Mengesha, Tadele; Salgado, Abner J
Publisher / Repository:
Springer International Publishing
Date Published:
Journal Name:
A3N2M: Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models: Proceedings of the 50th John H. Barrett Memorial Lectures
ISSN:
978-3-031-34089-5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Code-blending is the simultaneous expression of utterances using both a sign language and a spoken language. We expect that like code-switching, code-blending is linguistically constrained and thus we investigate two hypothesized constraints using an acceptability judgment task. Participants rated the acceptability of code-blended utterances designed to be consistent or inconsistent with these hypothesized constraints. We find strong support for the proposed constraint that each modality of code-blended utterances contributes content to a single proposition. We also find support for the proposed constraint that – at least for American Sign Language (ASL) and English – code-blended utterances make use of a single derivation which is realized using surface forms in the two languages, rather than two simultaneous derivations, one for each language. While this study was limited to ASL/English code-blending and further investigation is needed, we hope that this novel study will encourage future research comparing linguistic constraints on code-blending and code-switching. 
    more » « less
  2. null (Ed.)
    Biopolymer composites based on silk fibroin have shown widespread potential due to their brilliant applications in tissue engineering, medicine and bioelectronics. In our present work, biocomposite nanofilms with different special topologies were obtained through blending silk fibroin with crystallizable poly(L-lactic acid) (PLLA) at various mixture rates using a stirring-reflux condensation blending method. The microstructure, phase components, and miscibility of the blended films were studied through thermal analysis in combination with Fourier-transform infrared spectroscopy and Raman analysis. X-ray diffraction and scanning electron microscope were also used for advanced structural analysis. Furthermore, their conformation transition, interaction mechanism, and thermal stability were also discussed. The results showed that the hydrogen bonds and hydrophobic interactions existed between silk fibroin (SF) and PLLA polymer chains in the blended films. The secondary structures of silk fibroin and phase components of PLLA in composites vary at different ratios of silk to PLLA. The β-sheet content increased with the increase of the silk fibroin content, while the glass transition temperature was raised mainly due to the rigid amorphous phase presence in the blended system. This results in an increase in thermal stability in blended films compared to the pure silk fibroin films. This study provided detailed insights into the influence of synthetic polymer phases (crystalline, rigid amorphous, and mobile amorphous) on protein secondary structures through blending, which has direct applications on the design and fabrication of novel protein–synthetic polymer composites for the biomedical and green chemistry fields. 
    more » « less
  3. Replacing fossil fuels with non-carbon fuels is an important step towards reaching the ultimate goal of carbon neutrality. Instead of moving directly from the current natural gas energy systems to pure hydrogen, an incremental blending of hydrogen with natural gas could provide a seamless transition and minimize disruptions in power and heating source distribution to the public. Academic institutions, industry, and governments globally, are supporting research, development and deployment of hydrogen blending projects such as HyDeploy, GRHYD, THyGA, HyBlend, and others which are all seeking to develop efficient pathways to meet the carbon reduction goal in coming decades. There is an understanding that successful commercialization of hydrogen blending requires both scientific advances and favorable techno-economic analysis. Ongoing studies are focused on understanding how the properties of methane-hydrogen mixtures such as density, viscosity, phase interactions, and energy densities impact large-scale transportation via pipeline networks and end-use applications such as in modified engines, oven burners, boilers, stoves, and fuel cells. The advantages of hydrogen as a non-carbon energy carrier need to be balanced with safety concerns of blended gas during transport, such as overpressure and leakage in pipelines. While studies on the short-term hydrogen embrittlement effect have shown essentially no degradation in the metal tensile strength of pipelines, the long-term hydrogen embrittlement effect on pipelines is still the focus of research in other studies. Furthermore, pressure reduction is one of the drawbacks that hydrogen blending brings to the cost dynamics of blended gas transport. Hence, techno-economic models are also being developed to understand the energy transportation efficiency and to estimate the true cost of delivery of hydrogen blended natural gas as we move to decarbonize our energy systems. This review captures key large-scale efforts around the world that are designed to increase the confidence for a global transition to methane-hydrogen gas blends as a precursor to the adoption of a hydrogen economy by 2050. 
    more » « less
  4. Abstract Efficient sampling of the conformational space is essential for quantitative simulations of proteins. The multiscale enhanced sampling (MSES) method accelerates atomistic sampling by coupling it to a coarse‐grained (CG) simulation. Bias from coupling to the CG model is removed using Hamiltonian replica exchange, such that one could benefit simultaneously from the high accuracy of atomistic models and fast dynamics of CG ones. Here, we extend MSES to allow independent control of the effective temperatures of atomistic and CG simulations, by directly scaling the atomistic and CG Hamiltonians. The new algorithm, named MSES with independent tempering (MSES‐IT), supports more sophisticated Hamiltonian and temperature replica exchange protocols to further improve the sampling efficiency. Using a small but nontrivial β‐hairpin, we show that setting the effective temperature of CG model in all conditions to its melting temperature maximizes structural transition rates at the CG level and promotes more efficient replica exchange and diffusion in the condition space. As the result, MSES‐IT drive faster reversible transitions at the atomic level and leads to significant improvement in generating converged conformational ensembles compared to the original MSES scheme. 
    more » « less
  5. Strategic blending of supplementary cementitious materials (SCMs) into ordinary portland cement (OPC) helps reduce energy use and greenhouse gas emissions from concrete production. Expanding thermodynamic databases to include new reaction products from blended cements improves computational approaches used to understand the impact of blending SCMs with cement. Determination of thermodynamic parameters of cement reaction products based on temperature-dependent solubility is widely used in cement research; however, assumptions, limitations, and potential errors due to intercorrelation of the thermodynamic parameters in these calculation methods are rarely discussed. Here, methods for obtaining thermodynamic parameters are critically reviewed, including discussion of experimental validation. The discussion herein provides useful guidance to improve and validate the process of determining thermodynamic parameters of new reaction products from SCM-OPC reactions. 
    more » « less