skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changes in effective population size of Odonata in response to climate change revealed through genomics
The advent of third generation sequencing technologies has led to a boom of high-quality, chromosome level genome assemblies of Odonata, but to date, these have not been widely used to estimate the demographic history of the sequenced species through time. Yet, an understanding of how lineages have responded to past changes in the climate is useful in predicting their response to current and future changes in the climate. Here, we utilized the pairwise sequential markovian coalescent (PSMC) to estimate the demographic histories of Sympetrum striolatum, Ischnura elegans, and Hetaerina americana, three Odonata for which chromosome-length genome assemblies are available. Ischnura elegans showed a sharp decline in effective population size around the onset of the Pleistocene ice ages, while both S. striolatum and H. americana showed more recent declines. All three species have had relatively stable population sizes over the last one hundred thousand years. Although it is important to remain cautious when determining the conservation status of species, the coalescent models did not show any reason for major concern in any of the three species tested. The model for I. elegans confirmed prior research suggesting that population sizes of I. elegans will increase as temperatures rise.  more » « less
Award ID(s):
2002473 2002489
PAR ID:
10510197
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
WDA
Date Published:
Journal Name:
International Journal of Odonatology
Volume:
26
ISSN:
1388-7890
Page Range / eLocation ID:
205 to 211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using recently published chromosome‐length genome assemblies of two damselfly species,Ischnura elegansandPlatycnemis pennipes, and two dragonfly species,Pantala flavescensandTanypteryx hageni, we demonstrate that the autosomes of Odonata have undergone few fission, fusion, or inversion events, despite 250 million years of separation. In the four genomes discussed here, our results show that all autosomes have a clear ortholog in the ancestral karyotype. Despite this clear chromosomal orthology, we demonstrate that different factors, including concentration of repeat dynamics, GC content, relative position on the chromosome, and the relative proportion of coding sequence all influence the density of syntenic blocks across chromosomes. However, these factors do not interact to influence synteny the same way in any two pairs of species, nor is any one factor retained in all four species. Furthermore, it was previously unknown whether the micro‐chromosomes in Odonata are descended from one ancestral chromosome. Despite structural rearrangements, our evidence suggests that the micro‐chromosomes in the sampled Odonata do indeed descend from an ancestral chromosome, and that the micro‐chromosome inP. flavescenswas lost through fusion with autosomes. 
    more » « less
  2. Sethuraman, Arun (Ed.)
    Abstract Damselflies and dragonflies (Order: Odonata) play important roles in both aquatic and terrestrial food webs and can serve as sentinels of ecosystem health and predictors of population trends in other taxa. The habitat requirements and limited dispersal of lotic damselflies make them especially sensitive to habitat loss and fragmentation. As such, landscape genomic studies of these taxa can help focus conservation efforts on watersheds with high levels of genetic diversity, local adaptation, and even cryptic endemism. Here, as part of the California Conservation Genomics Project (CCGP), we report the first reference genome for the American rubyspot damselfly, Hetaerina americana, a species associated with springs, streams and rivers throughout California. Following the CCGP assembly pipeline, we produced two de novo genome assemblies. The primary assembly includes 1,630,044,487 base pairs, with a contig N50 of 5.4 Mb, a scaffold N50 of 86.2 Mb, and a BUSCO completeness score of 97.6%. This is the seventh Odonata genome to be made publicly available and the first for the subfamily Hetaerininae. This reference genome fills an important phylogenetic gap in our understanding of Odonata genome evolution, and provides a genomic resource for a host of interesting ecological, evolutionary, and conservation questions for which the rubyspot damselfly genus Hetaerina is an important model system. 
    more » « less
  3. Abstract Studies of species that experience environmental heterogeneity across their distributions have become an important tool for understanding mechanisms of adaptation and predicting responses to climate change. We examine population structure, demographic history and environmentally associated genomic variation inBombus vosnesenskii, a common bumble bee in the western USA, using whole genome resequencing of populations distributed across a broad range of latitudes and elevations. We find thatB. vosnesenskiiexhibits minimal population structure and weak isolation by distance, confirming results from previous studies using other molecular marker types. Similarly, demographic analyses with Sequentially Markovian Coalescent models suggest that minimal population structure may have persisted since the last interglacial period, with genomes from different parts of the species range showing similar historical effective population size trajectories and relatively small fluctuations through time. Redundancy analysis revealed a small amount of genomic variation explained by bioclimatic variables. Environmental association analysis with latent factor mixed modelling (LFMM2) identified few outlier loci that were sparsely distributed throughout the genome and although a few putative signatures of selective sweeps were identified, none encompassed particularly large numbers of loci. Some outlier loci were in genes with known regulatory relationships, suggesting the possibility of weak selection, although compared with other species examined with similar approaches, evidence for extensive local adaptation signatures in the genome was relatively weak. Overall, results indicateB. vosnesenskiiis an example of a generalist with a high degree of flexibility in its environmental requirements that may ultimately benefit the species under periods of climate change. 
    more » « less
  4. Lohmueller, Kirk (Ed.)
    Abstract The levels and distribution of standing genetic variation in a genome can provide a wealth of insights about the adaptive potential, demographic history, and genome structure of a population or species. As structural variants are increasingly associated with traits important for adaptation and speciation, investigating both sequence and structural variation is essential for wholly tapping this potential. Using a combination of shotgun sequencing, 10x Genomics linked reads and proximity-ligation data (Chicago and Hi-C), we produced and annotated a chromosome-level genome assembly for the Atlantic silverside (Menidia menidia)—an established ecological model for studying the phenotypic effects of natural and artificial selection—and examined patterns of genomic variation across two individuals sampled from different populations with divergent local adaptations. Levels of diversity varied substantially across each chromosome, consistently being highly elevated near the ends (presumably near telomeric regions) and dipping to near zero around putative centromeres. Overall, our estimate of the genome-wide average heterozygosity in the Atlantic silverside is among the highest reported for a fish, or any vertebrate (1.32–1.76% depending on inference method and sample). Furthermore, we also found extreme levels of structural variation, affecting ∼23% of the total genome sequence, including multiple large inversions (> 1 Mb and up to 12.6 Mb) associated with previously identified haploblocks showing strong differentiation between locally adapted populations. These extreme levels of standing genetic variation are likely associated with large effective population sizes and may help explain the remarkable adaptive divergence among populations of the Atlantic silverside. 
    more » « less
  5. Abstract Flow cytometry estimates of genome sizes among species of Drosophila show a 3-fold variation, ranging from ∼127 Mb in Drosophila mercatorum to ∼400 Mb in Drosophila cyrtoloma. However, the assembled portion of the Muller F element (orthologous to the fourth chromosome in Drosophila melanogaster) shows a nearly 14-fold variation in size, ranging from ∼1.3 Mb to >18 Mb. Here, we present chromosome-level long-read genome assemblies for 4 Drosophila species with expanded F elements ranging in size from 2.3 to 20.5 Mb. Each Muller element is present as a single scaffold in each assembly. These assemblies will enable new insights into the evolutionary causes and consequences of chromosome size expansion. 
    more » « less