skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Determination of soil water retention curves from thermal conductivity curves, texture, bulk density, and field capacity
Award ID(s):
2037504
PAR ID:
10510308
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Soil and Tillage Research
Volume:
237
Issue:
C
ISSN:
0167-1987
Page Range / eLocation ID:
105957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We initiate the study of a class of real plane algebraic curves which we callexpressive. These are the curves whose defining polynomial has the smallest number of critical points allowed by the topology of the set of real points of a curve. This concept can be viewed as a global version of the notion of a real morsification of an isolated plane curve singularity. We prove that a plane curve  C C is expressive if (a) each irreducible component of  C C can be parametrized by real polynomials (either ordinary or trigonometric), (b) all singular points of C C in the affine plane are ordinary hyperbolic nodes, and (c) the set of real points of C C in the affine plane is connected. Conversely, an expressive curve with real irreducible components must satisfy conditions (a)–(c), unless it exhibits some exotic behaviour at infinity. We describe several constructions that produce expressive curves, and discuss a large number of examples, including: arrangements of lines, parabolas, and circles; Chebyshev and Lissajous curves; hypotrochoids and epitrochoids; and much more. 
    more » « less
  2. null (Ed.)
    Curves play a fundamental role across computer graphics, physical simulation, and mathematical visualization, yet most tools for curve design do nothing to prevent crossings or self-intersections. This paper develops efficient algorithms for (self-)repulsion of plane and space curves that are well-suited to problems in computational design. Our starting point is the so-called tangent-point energy, which provides an infinite barrier to self-intersection. In contrast to local collision detection strategies used in, e.g., physical simulation, this energy considers interactions between all pairs of points, and is hence useful for global shape optimization: local minima tend to be aesthetically pleasing, physically valid, and nicely distributed in space. A reformulation of gradient descent, based on a Sobolev-Slobodeckij inner product enables us to make rapid progress toward local minima---independent of curve resolution. We also develop a hierarchical multigrid scheme that significantly reduces the per-step cost of optimization. The energy is easily integrated with a variety of constraints and penalties (e.g., inextensibility, or obstacle avoidance), which we use for applications including curve packing, knot untangling, graph embedding, non-crossing spline interpolation, flow visualization, and robotic path planning. 
    more » « less
  3. null (Ed.)
    In this paper, we make partial progress on a function field version of the dynamical uniform boundedness conjecture for certain one-dimensional families $${\mathcal{F}}$$ of polynomial maps, such as the family $$f_{c}(x)=x^{m}+c$$ , where $$m\geq 2$$ . We do this by making use of the dynatomic modular curves $$Y_{1}(n)$$ (respectively $$Y_{0}(n)$$ ) which parametrize maps $$f$$ in $${\mathcal{F}}$$ together with a point (respectively orbit) of period $$n$$ for $$f$$ . The key point in our strategy is to study the set of primes $$p$$ for which the reduction of $$Y_{1}(n)$$ modulo $$p$$ fails to be smooth or irreducible. Morton gave an algorithm to construct, for each $$n$$ , a discriminant $$D_{n}$$ whose list of prime factors contains all the primes of bad reduction for $$Y_{1}(n)$$ . In this paper, we refine and strengthen Morton’s results. Specifically, we exhibit two criteria on a prime $$p$$ dividing $$D_{n}$$ : one guarantees that $$p$$ is in fact a prime of bad reduction for $$Y_{1}(n)$$ , yet this same criterion implies that $$Y_{0}(n)$$ is geometrically irreducible. The other guarantees that the reduction of $$Y_{1}(n)$$ modulo $$p$$ is actually smooth. As an application of the second criterion, we extend results of Morton, Flynn, Poonen, Schaefer, and Stoll by giving new examples of good reduction of $$Y_{1}(n)$$ for several primes dividing $$D_{n}$$ when $n=7,8,11$ , and $$f_{c}(x)=x^{2}+c$$ . The proofs involve a blend of arithmetic and complex dynamics, reduction theory for curves, ramification theory, and the combinatorics of the Mandelbrot set. 
    more » « less
  4. Abstract Many natural real-valued functions of closed curves are known to extend continuously to the larger space of geodesic currents. For instance, the extension of length with respect to a fixed hyperbolic metric was a motivating example for the development of geodesic currents. We give a simple criterion on a curve function that guarantees a continuous extension to geodesic currents. The main condition of our criterion is the smoothing property, which has played a role in the study of systoles of translation lengths for Anosov representations. It is easy to see that our criterion is satisfied for almost all known examples of continuous functions on geodesic currents, such as nonpositively curved lengths or stable lengths for surface groups, while also applying to new examples like extremal length. We use this extension to obtain a new curve counting result for extremal length. 
    more » « less