The number of reproduction and replication studies undertaken across the sciences continues to rise, but such studies have not yet become commonplace in geography. Existing attempts to reproduce geographic research suggest that many studies cannot be fully reproduced, or are simply missing components needed to attempt a reproduction. Despite this suggestive evidence, a systematic assessment of geographers’ perceptions of reproducibility and use of reproducible research practices remains absent from the literature, as does an identification of the factors that keep geographers from conducting reproduction studies. We address each of these needs by surveying active geographic researchers selected using probability sampling techniques from a rigorously constructed sampling frame. We identify a clear division in perceptions of reproducibility among geographic subfields. We also find varying levels of familiarity with reproducible research practices and a perceived lack of incentives to attempt and publish reproduction studies. Despite many barriers to reproducibility and divisions between subfields, we also find common foundations for examining and expanding reproducibility in the field. These include interest in publishing transparent and reproducible methods, and in reproducing other researchers’ studies for a variety of motivations including learning, assessing the internal validity of a study, or extending prior work. 
                        more » 
                        « less   
                    
                            
                            A Framework for Moving Beyond Computational Reproducibility: Lessons from Three Reproductions of Geographical Analyses of COVID‐19
                        
                    
    
            Despite recent calls to make geographical analyses more reproducible, formal attempts to reproduce or replicate published work remain largely absent from the geographic literature. The reproductions of geographic research that do exist typically focus on computational reproducibility—whether results can be recreated using data and code provided by the authors—rather than on evaluating the conclusion and internal validity and evidential value of the original analysis. However, knowing if a study is computationally reproducible is insufficient if the goal of a reproduction is to identify and correct errors in our knowledge. We argue that reproductions of geographic work should focus on assessing whether the findings and claims made in existing empirical studies are well supported by the evidence presented. We aim to facilitate this transition by introducing a model framework for conducting reproduction studies, demonstrating its use, and reporting the findings of three exemplar studies. We present three model reproductions of geographical analyses of COVID‐19 based on a common, open access template. Each reproduction attempt is published as an open access repository, complete with pre‐analysis plan, data, code, and final report. We find each study to be partially reproducible, but moving past computational reproducibility, our assessments reveal conceptual and methodological concerns that raise questions about the predictive value and the magnitude of the associations presented in each study. Collectively, these reproductions and our template materials offer a practical framework others can use to reproduce and replicate empirical spatial analyses and ultimately facilitate the identification and correction of errors in the geographic literature. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2049837
- PAR ID:
- 10510364
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Geographical Analysis
- Volume:
- 56
- Issue:
- 1
- ISSN:
- 0016-7363
- Page Range / eLocation ID:
- 163 to 184
- Subject(s) / Keyword(s):
- reproducibility validity spatial analysis COVID-19
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. Reproducible open science with FAIR data sharing principles requires research to be disseminated with open data and standardised metadata. Researchers in the geographic sciences may benefit from authoring and maintaining metadata from the earliest phases of the research life cycle, rather than waiting until the data dissemination phase. Fully open and reproducible research should be conducted within a version-controlled executable research compendium with registered pre-analysis plans, and may also involve research proposals, data management plans, and protocols for research with human subjects. We review metadata standards and research documentation needs through each phase of the research process to distil a list of features for software to support a metadata-rich open research life cycle. The review is based on open science and reproducibility literature and on our own work developing a template research compendium for conducting reproduction and replication studies. We then review available open source geographic metadata software against these requirements, finding each software program to offer a partial solution. We conclude with a vision for software-supported metadata-rich open research practices intended to reduce redundancies in open research work while expanding transparency and reproducibility in geographic research.more » « less
- 
            Why are some research studies easy to reproduce while others are difficult? Casting doubt on the accuracy of scientific work is not fruitful, especially when an individual researcher cannot reproduce the claims made in the paper. There could be many subjective reasons behind the inability to reproduce a scientific paper. The field of Machine Learning (ML) faces a reproducibility crisis, and surveying a portion of published articles has resulted in a group realization that although sharing code repositories would be appreciable, code bases are not the end all be all for determining the reproducibility of an article. Various parties involved in the publication process have come forward to address the reproducibility crisis and solutions such as badging articles as reproducible, reproducibility checklists at conferences (NeurIPS, ICML, ICLR, etc.), and sharing artifacts on OpenReview come across as promising solutions to the core problem. The breadth of literature on reproducibility focuses on measures required to avoid ir-reproducibility, and there is not much research into the effort behind reproducing these articles. In this paper, we investigate the factors that contribute to the easiness and difficulty of reproducing previously published studies and report on the foundational framework to quantify effort of reproducibility.more » « less
- 
            Despite increased efforts to assess the adoption rates of open science and robustness of reproducibility in sub-disciplines of education technology, there is a lack of understanding of why some research is not reproducible. Prior work has taken the first step toward assessing reproducibility of research, but has assumed certain constraints which hinder its discovery. Thus, the purpose of this study was to replicate previous work on papers within the proceedings of the International Conference on Educational Data Mining to accurately report on which papers are reproducible and why. Specifically, we examined 208 papers, attempted to reproduce them, documented reasons for reproducibility failures, and asked authors to provide additional information needed to reproduce their study. Our results showed that out of 12 papers that were potentially reproducible, only one successfully reproduced all analyses, and another two reproduced most of the analyses. The most common failure for reproducibility was failure to mention libraries needed, followed by non-seeded randomness.more » « less
- 
            Despite increased efforts to assess the adoption rates of open science and robustness of reproducibility in sub-disciplines of education technology, there is a lack of understanding of why some research is not reproducible. Prior work has taken the first step toward assessing reproducibility of research, but has assumed certain constraints which hinder its discovery. Thus, the purpose of this study was to replicate previous work on papers within the proceedings of the International Conference on Educational Data Mining and develop metrics to accurately report on which papers are reproducible and why. Specifically, we examined 208 papers, attempted to reproduce them, documented reasons for reproducibility failures, and asked authors to provide additional information needed to reproduce their study. Our results showed that out of 12 papers that were potentially reproducible, only one successfully reproduced all analyses, and another two reproduced most of the analyses. The most common failure for reproducibility was failure to mention libraries needed, followed by non-seeded randomness. All openly accessible work can be found in an Open Science Foundation project1.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    