skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Statewide Assessment of Emergency Response Officials:Best Practices and Recommendations for Inclusive Emergency Alerts in Colorado
This mission includes research materials developed by the Natural Hazards Center at the University of Colorado Boulder in accordance with Colorado House Bill 23-1237 (see related work). For this mission, we collected information using a statewide survey of emergency response personnel (222 responses) and meetings with key partners (37 people). Included here are the survey recruitment materials, survey instrument, raw survey data. We also include a partner meeting question bank that we used to conduct partner meetings. Lastly, we include two annotated bibliographies as documents. We anticipate these materials may be useful in developing future surveys on alerts and warnings and developing interview questions for emergency alert officials. This data could also be reproduced to compare alert and warning services across other states.Included here are data and research materials that supported the investigation of emergency alert and warning systems in Colorado developed in accordance with Colorado House Bill 23-1237 (https://leg.colorado.gov/bills/hb23-1237). The aim of the project was to identify how to improve emergency alerting for people who speak non-English languages and have auditory or visual disabilities. First, we include two annotated bibliographies with over 60 publications on topics related to alert and warning systems, disability access, and language access published in the last 20 years. Second, we include a dataset of survey questions, along with the 222 responses from emergency response personnel in Colorado involved in alert and warning activities. Lastly, we also include a data dictionary, partner meeting questionnaire, recruitment materials, and a sample letter of support from a key partner. These data and materials could be used to review relevant publications on this topic and to aid in developing future surveys focused on alert and warning systems. For final report and additional project context, see project webpage: https://hazards.colorado.edu/research-projects/colorado-inclusive-language-and-access-in-emergency-alerts.  more » « less
Award ID(s):
1635593
PAR ID:
10510390
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
;
Publisher / Repository:
Designsafe-CI
Date Published:
Edition / Version:
1
Subject(s) / Keyword(s):
Partner Meeting Question Bank Colorado Survey: Instrument and Data Colorado Survey: Recruitment Emails and Letter of Support Natural Hazards Center University of Colorado Boulder
Format(s):
Medium: X
Location:
DesignSafe Cyberinfrastructure
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The purpose of alerts and warnings is to provide necessary information to the public that will lead to their safety in emergencies. The nation’s alerting capabilities need to evolve and progress with the extensive use of smartphones, and newer technologies become available, especially to be more precisely targeted to sub-populations at risk. Historically, this has been a challenge as the delivery of alerts and warning messages to the public is primarily through broadcast media and signs. However, deploying such signs takes time and may not be visible to people imminent of natural hazards. Especially for road closing, marking hazards, emergency evacuation, etc., it would be beneficial to have an easy-to-deploy and automated alert/warning system that requires no line of sight. To this end, we have developed Insight – a Bluetooth beacon-based system that uses a smartphone application to sense signals from beacons marking hazard zones. The system does not require any Internet or communication infrastructure and therefore, it is resilient to breakdowns in communications during disasters. To demonstrate the feasibility of Insight, we conducted a study in an urban university campus location. The system demonstrated adequate usability and feasibility. 
    more » « less
  2. Modern cell phones are required to receive and display alerts via the Wireless Emergency Alert (WEA) program, under the mandate of the Warning, Alert, and Response Act of 2006. These alerts include AMBER alerts, severe weather alerts, and (unblockable) Presidential Alerts, intended to inform the public of imminent threats. Recently, a test Presidential Alert was sent to all capable phones in the United States, prompting concerns about how the underlying WEA protocol could be misused or attacked. In this paper, we investigate the details of this system, and develop and demonstrate the first practical spoofing attack on Presidential Alerts, using both commercially available hardware as well as modified open source software. Our attack can be performed using a commercially-available software defined radio, and our modifications to the open source NextEPC and srsLTE software libraries. We find that with only four malicious portable base stations of a single Watt of transmit power each, almost all of a 50,000-seat stadium can be attacked with a 90% success rate. The true impact of such an attack would of course depend on the density of cell phones in range; fake alerts in crowded cities or stadiums could potentially result in cascades of panic. Fixing this problem will require a large collaborative effort between carriers, government stakeholders, and cell phone manufacturers. To seed this effort, we also discuss several defenses to address this threat in both the short and long term. 
    more » « less
  3. The U.S. Geological Survey-managed ShakeAlert® earthquake early warning system is the first public alerting system in the United States to provide rapid mass notification when an earthquake is detected. Although public alert delivery via mobile phones began in California in 2019 followed by Oregon and Washington in 2021, little is known about what might drive widespread implementation in at-risk institutional settings such as schools. For example, there has been limited research on how to best integrate earthquake early warning into existing emergency plans, alert systems, and drills to keep school children and personnel safe in an earthquake. To address this gap, in the spring of 2022, every school district superintendent in Alaska, California, Oregon, and Washington was sent a 15-min online survey. The survey assessed superintendent knowledge of ShakeAlert, preferences for alert messaging, and perceived opportunities and barriers to incorporating the system in schools. The results showed that superintendents had low awareness of ShakeAlert but held positive perceptions of the system's potential to enable life-saving protective actions. A major barrier to adoption included the perceived financial cost of implementing and maintaining the system. There were some statistically significant differences in state responses, and future research could investigate the specific needs of each state based on school district size and composition, hazard exposure, and earthquake experience. Together these findings can help inform targeted strategies to increase ShakeAlert adoption in schools and ultimately improve the safety of school children and staff during earthquakes. 
    more » « less
  4. Abstract Pharmacogenomic (PGx) biomarkers integrated using machine learning can be embedded within the electronic health record (EHR) to provide clinicians with individualized predictions of drug treatment outcomes. Currently, however, drug alerts in the EHR are largely generic (not patient‐specific) and contribute to increased clinician stress and burnout. Improving the usability of PGx alerts is an urgent need. Therefore, this work aimed to identify principles for optimal PGx alert design through a health‐system‐wide, mixed‐methods study. Clinicians representing multiple practices and care settings (N = 1062) in urban, rural, and underserved regions were invited to complete an electronic survey comparing the usability of three drug alerts for citalopram, as a case study. Alert 1 contained a generic warning of pharmacogenomic effects on citalopram metabolism. Alerts 2 and 3 provided patient‐specific predictions of citalopram efficacy with varying depth of information. Primary outcomes included the System's Usability Scale score (0–100 points) of each alert, the perceived impact of each alert on stress and decision‐making, and clinicians' suggestions for alert improvement. Secondary outcomes included the assessment of alert preference by clinician age, practice type, and geographic setting. Qualitative information was captured to provide context to quantitative information. The final cohort comprised 305 geographically and clinically diverse clinicians. A simplified, individualized alert (Alert 2) was perceived as beneficial for decision‐making and stress compared with a more detailed version (Alert 3) and the generic alert (Alert 1) regardless of age, practice type, or geographic setting. Findings emphasize the need for clinician‐guided design of PGx alerts in the era of digital medicine. 
    more » « less
  5. Almost half of the preventable deaths in emergency care can be associated with a medical delay. Understanding how clinicians experience delays can lead to improved alert designs to increase delay awareness and mitigation. In this paper, we present the findings from an iterative user-centered design process involving 48 clinicians to develop a prototype alert system for supporting delay awareness in complex medical teamwork such as trauma resuscitation. We used semi-structured interviews and card-sorting workshops to identify the most common delays and elicit design requirements for the prototype alert system. We then conducted a survey to refine the alert designs, followed by near-live, video-guided simulations to investigate clinicians' reactions to the alerts. We contribute to CSCW by designing a prototype alert system to support delay awareness in time-critical, complex teamwork and identifying four mechanisms through which teams mitigate delays. 
    more » « less