skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Black holes in massive dynamical Chern-Simons gravity: Scalar hair and quasibound states at decoupling
Black holes have a unique sensitivity to the presence of ultralight matter fields or modifications of the underlying theory of gravity. In the present paper we combine both features by studying an ultralight, dynamical scalar field that is nonminimally coupled to the gravitational Chern-Simons term. In particular, we numerically simulate the evolution of such a scalar field around a rotating black hole in the decoupling approximation and find a new kind of massive scalar hair anchored around the black hole. In the proximity of the black hole, the scalar exhibits the typical dipolar structure of hairy solutions in (massless) dynamical Chern-Simons gravity. At larger distances, the field transitions to an oscillating scalar cloud that is induced by the mass term. Finally, we complement the time-domain results with a spectral analysis of the scalar field characteristic frequencies.  more » « less
Award ID(s):
2004879
PAR ID:
10510406
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
108
Issue:
4
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The detection of gravitational waves resulting from the coalescence of binary black holes by the LIGO-Virgo-Kagra Collaboration has inaugurated a new era in gravitational physics. These gravitational waves provide a unique opportunity to test Einstein’s general relativity and its modifications in the regime of extreme gravity. A significant aspect of such tests involves the study of the ringdown phase of gravitational waves from binary black hole coalescence, which can be decomposed into a superposition of various quasinormal modes. In general relativity, the spectra of quasinormal modes depend on the mass, spin, and charge of the final black hole, but they can also be influenced by additional properties of the black hole spacetime, as well as corrections to the general theory of relativity. In this work, we focus on a specific modified theory known as dynamical Chern-Simons gravity. We employ the modified Teukolsky formalism developed in a previous study and lay down the foundations to investigate perturbations of slowly rotating black holes admitted by the theory. Specifically, we derive the master equations for the Ψ 0 and Ψ 4 Weyl scalar perturbations that characterize the radiative part of gravitational perturbations, as well as the master equation for the scalar field perturbations. We employ metric reconstruction techniques to obtain explicit expressions for all relevant quantities. Finally, by leveraging the properties of spin-weighted spheroidal harmonics to eliminate the angular dependence from the evolution equations, we derive two, radial, second-order, ordinary differential equations for Ψ 0 and Ψ 4 , respectively. These two equations are coupled to another radial, second-order, ordinary differential equation for the scalar field perturbations. This work is the first attempt to derive a master equation for black holes in dynamical Chern-Simons gravity using curvature perturbations. The master equations we obtain can then be numerically integrated to obtain the quasinormal mode spectrum of slowly rotating black holes in this theory, making progress in the study of ringdown in dynamical Chern-Simons gravity. Published by the American Physical Society2024 
    more » « less
  2. A<sc>bstract</sc> We show that the general charged, rotating black hole in five-dimensional Einstein-Maxwell theory has a singular extremal limit. Only the known analytic solutions with exactly zero charge or zero angular momenta have smooth extremal horizons. We also consider general black holes in five-dimensional Einstein-Maxwell-Chern-Simons theory, and show that they also have singular extremal limits except for one special value of the coefficient of the Chern-Simons term (the one fixed by supergravity). Combining this with earlier results showing that extremal black holes have singular horizons in four-dimensional general relativity with small higher derivative corrections, and in anti-de Sitter space with perturbed boundary conditions, one sees that smooth extremal horizons are indeed the exception and not the rule. 
    more » « less
  3. A bstract We draw attention to a class of generalized global symmetries, which we call “Chern-Weil global symmetries,” that arise ubiquitously in gauge theories. The Noether currents of these Chern-Weil global symmetries are given by wedge products of gauge field strengths, such as F 2 ∧ H 3 and tr( $$ {F}_2^2 $$ F 2 2 ), and their conservation follows from Bianchi identities. As a result, they are not easy to break. However, it is widely believed that exact global symmetries are not allowed in a consistent theory of quantum gravity. As a result, any Chern-Weil global symmetry in a low-energy effective field theory must be either broken or gauged when the theory is coupled to gravity. In this paper, we explore the processes by which Chern-Weil symmetries may be broken or gauged in effective field theory and string theory. We will see that many familiar phenomena in string theory, such as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil symmetries in quantum gravity, suggesting that they might be general features of quantum gravity. We further discuss implications of breaking and gauging Chern-Weil symmetries for particle phenomenology and for boundary CFTs of AdS bulk theories. Chern-Weil global symmetries thus offer a unified framework for understanding many familiar aspects of quantum field theory and quantum gravity. 
    more » « less
  4. We propose a new formula for the entropy of a dynamical black hole—valid to leading order for perturbations off of a stationary black hole background—in an arbitrary classical diffeomorphism covariant Lagrangian theory of gravity in n dimensions. In stationary eras, this formula agrees with the usual Noether charge formula, but in nonstationary eras, we obtain a nontrivial correction term. In particular, in general relativity, our formula for the entropy of a dynamical black hole differs from the standard Bekenstein-Hawking formula A / 4 by a term involving the integral of the expansion of the null generators of the horizon. We show that, to leading perturbative order, our dynamical entropy in general relativity is equal to 1 / 4 of the area of the apparent horizon. Our formula for entropy in a general theory of gravity is obtained from the requirement that a “local physical process version” of the first law of black hole thermodynamics hold for perturbations of a stationary black hole. It follows immediately that for first order perturbations sourced by external matter that satisfies the null energy condition, our entropy obeys the second law of black hole thermodynamics. For vacuum perturbations, the leading-order change in entropy occurs at second order in perturbation theory, and the second law is obeyed at leading order if and only if the modified canonical energy flux is positive (as is the case in general relativity but presumably would not hold in more general theories of gravity). Our formula for the entropy of a dynamical black hole differs from a formula proposed independently by Dong and by Wall. We obtain the general relationship between their formula and ours. We then consider the generalized second law in semiclassical gravity for first order perturbations of a stationary black hole. We show that the validity of the quantum null energy condition (QNEC) on a Killing horizon is equivalent to the generalized second law using our notion of black hole entropy but using a modified notion of von Neumann entropy for matter. On the other hand, the generalized second law for the Dong-Wall entropy is equivalent to an integrated version of QNEC, using the unmodified von Neumann entropy for the entropy of matter. Published by the American Physical Society2024 
    more » « less
  5. A<sc>bstract</sc> We provide a precise relation between an ensemble of Narain conformal field theories (CFTs) with central chargec=n, and a sum of (U(1) × U(1))nChern-Simons theories on different handlebody topologies. We begin by reviewing the general relation of additive codes to Narain CFTs. Then we describe a holographic duality between any given Narain theory and a pure Chern-Simons theory on a handlebody manifold. We proceed to consider an ensemble of Narain theories, defined in terms of an ensemble of codes of lengthnoverℤk × ℤkfor primek. We show that averaging over this ensemble is holographically dual to a level-k(U(1) × U(1))nChern-Simons theory, summed over a finite number of inequivalent classes of handlebody topologies. In the limit of largekthe ensemble approaches the ensemble of all Narain theories, and its bulk dual becomes equivalent to “U(1)-gravity” — the sum of the pertubative part of the Chern-Simons wavefunction over all possible handlebodies — providing a bulk microscopic definition for this theory. Finally, we reformulate the sum over handlebodies in terms of Hecke operators, paving the way for generalizations. 
    more » « less