skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perturbations of spinning black holes in dynamical Chern-Simons gravity: Slow rotation equations
The detection of gravitational waves resulting from the coalescence of binary black holes by the LIGO-Virgo-Kagra Collaboration has inaugurated a new era in gravitational physics. These gravitational waves provide a unique opportunity to test Einstein’s general relativity and its modifications in the regime of extreme gravity. A significant aspect of such tests involves the study of the ringdown phase of gravitational waves from binary black hole coalescence, which can be decomposed into a superposition of various quasinormal modes. In general relativity, the spectra of quasinormal modes depend on the mass, spin, and charge of the final black hole, but they can also be influenced by additional properties of the black hole spacetime, as well as corrections to the general theory of relativity. In this work, we focus on a specific modified theory known as dynamical Chern-Simons gravity. We employ the modified Teukolsky formalism developed in a previous study and lay down the foundations to investigate perturbations of slowly rotating black holes admitted by the theory. Specifically, we derive the master equations for the Ψ 0 and Ψ 4 Weyl scalar perturbations that characterize the radiative part of gravitational perturbations, as well as the master equation for the scalar field perturbations. We employ metric reconstruction techniques to obtain explicit expressions for all relevant quantities. Finally, by leveraging the properties of spin-weighted spheroidal harmonics to eliminate the angular dependence from the evolution equations, we derive two, radial, second-order, ordinary differential equations for Ψ 0 and Ψ 4 , respectively. These two equations are coupled to another radial, second-order, ordinary differential equation for the scalar field perturbations. This work is the first attempt to derive a master equation for black holes in dynamical Chern-Simons gravity using curvature perturbations. The master equations we obtain can then be numerically integrated to obtain the quasinormal mode spectrum of slowly rotating black holes in this theory, making progress in the study of ringdown in dynamical Chern-Simons gravity. Published by the American Physical Society2024  more » « less
Award ID(s):
2207650 2309211 2309231 2011961
PAR ID:
10516659
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
APS (PRD)
Date Published:
Journal Name:
Physical Review D
Volume:
109
Issue:
10
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The first observation of the decay Ξ b ψ ( 2 S ) Ξ and measurement of the branching ratio of Ξ b ψ ( 2 S ) Ξ to Ξ b J / ψ Ξ are presented. The J / ψ and ψ ( 2 S ) mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at s = 13 TeV in 2016–2018, corresponding to an integrated luminosity of 140 fb 1 . The branching fraction ratio is measured to be B ( Ξ b ψ ( 2 S ) Ξ ) / B ( Ξ b J / ψ Ξ ) = 0.8 4 0.19 + 0.21 ( stat ) ± 0.10 ( syst ) ± 0.02 ( B ) , where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the Ξ b ( 5945 ) 0 baryon mass and natural width are also presented, using the Ξ b π + final state, where the Ξ b baryon is reconstructed through the decays J / ψ Ξ , ψ ( 2 S ) Ξ , J / ψ Λ K , and J / ψ Σ 0 K . Finally, the fraction of Ξ b baryons produced from Ξ b ( 5945 ) 0 decays is determined. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
  2. The response of black holes to small perturbations is known to be partially described by a superposition of quasinormal modes. Despite their importance to enable strong-field tests of gravity, little to nothing is known about what overtones and quasinormal-mode amplitudes are like for black holes in extensions to general relativity. We take a first step in this direction and study what is arguably the simplest model that allows first-principle calculations to be made: a nonrotating black hole in an effective-field-theory extension of general relativity with cubic-in-curvature terms. Using a phase-amplitude scheme that uses analytical continuation and the Prüfer transformation, we numerically compute, for the first time, the quasinormal overtone frequencies (in this theory) and quasinormal-mode excitation factors (in any theory beyond general relativity). We find that the overtone quasinormal frequencies and their excitation factors are more sensitive than the fundamental mode to the length scale l introduced by the higher-derivative terms in the effective field theory. We argue that a description of all overtones cannot be made within the regime of validity of the effective field theory, and we conjecture that this is a general feature of any extension to general relativity that introduces a new length scale. We also find that a parametrization of the modifications to the general-relativistic quasinormal frequencies in terms of the ratio between l and the black hole’s mass is somewhat inadequate, and we propose a better alternative. As an application, we perform a preliminary study of the implications of the breakdown, in the effective field theory, of the equivalence between the quasinormal mode spectra associated to metric perturbations of polar and axial parity of the Schwarzschild black hole in general relativity. We also present a simple justification for the loss of isospectrality. Published by the American Physical Society2024 
    more » « less
  3. We present constraints on the f ( R ) gravity model using a sample of 1005 galaxy clusters in the redshift range 0.25–1.78 that have been selected through the thermal Sunyaev-Zel’dovich effect from South Pole Telescope data and subjected to optical and near-infrared confirmation with the multicomponent matched filter algorithm. We employ weak gravitational lensing mass calibration from the Dark Energy Survey Year 3 data for 688 clusters at z < 0.95 and from the Hubble Space Telescope for 39 clusters with 0.6 < z < 1.7 . Our cluster sample is a powerful probe of f ( R ) gravity, because this model predicts a scale-dependent enhancement in the growth of structure, which impacts the halo mass function (HMF) at cluster mass scales. To account for these modified gravity effects on the HMF, our analysis employs a semianalytical approach calibrated with numerical simulations. Combining calibrated cluster counts with primary cosmic microwave background temperature and polarization anisotropy measurements from the Planck 2018 release, we derive robust constraints on the f ( R ) parameter f R 0 . Our results, log 10 | f R 0 | < 5.32 at the 95% credible level, are the tightest current constraints on f ( R ) gravity from cosmological scales. This upper limit rules out f ( R ) -like deviations from general relativity that result in more than a 20 % enhancement of the cluster population on mass scales M 200 c > 3 × 10 14 M . Published by the American Physical Society2025 
    more » « less
  4. The inclusive production of the charm-strange baryon Ω c 0 is measured for the first time via its semileptonic decay into Ω e + ν e at midrapidity ( | y | < 0.8 ) in proton-proton (pp) collisions at the center-of-mass energy s = 13 TeV with the ALICE detector at the LHC. The transverse momentum ( p T ) differential cross section multiplied by the branching ratio is presented in the interval 2 < p T < 12 GeV / c . The branching-fraction ratio BR ( Ω c 0 Ω e + ν e ) / BR ( Ω c 0 Ω π + ) is measured to be 1.12 ± 0.22 (stat) ± 0.27 (syst). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented. © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
  5. Stellar evolution predicts the existence of a mass gap for black hole remnants produced by pair-instability supernova dynamics, whose lower and upper edges are very uncertain. We study the possibility of constraining the location of the upper end of the pair-instability mass gap, which is believed to appear around m min 130 M , using gravitational wave observations of compact binary mergers with next-generation ground-based detectors. While high metallicity may not allow for the formation of first-generation black holes on the “far side” beyond the gap, metal-poor environments containing population III stars could lead to such heavy black hole mergers. We show that, even in the presence of contamination from other merger channels, next-generation detectors will measure the location of the upper end of the mass gap with a relative precision close to Δ m min / m min 4 % ( N det / 100 ) 1 / 2 at 90% CL, where N det is the number of detected mergers with both members beyond the gap. These future observations could reduce current uncertainties in nuclear and astrophysical processes controlling the location of the gap. Published by the American Physical Society2024 
    more » « less