- Award ID(s):
- 1941720
- PAR ID:
- 10510463
- Publisher / Repository:
- Proceedings of the 46th Conference of the International Group for the Psychology of Mathematics Education
- Date Published:
- Journal Name:
- Proceedings of the 46th Conference of the International Group for the Psychology of Mathematics Education
- Volume:
- 4
- Page Range / eLocation ID:
- 339–346
- Format(s):
- Medium: X
- Location:
- Haifa, Israel
- Sponsoring Org:
- National Science Foundation
More Like this
-
Lischka, A. E. ; Dyer, E. B. ; Jones, R. S. ; Lovett, J. N. ; Strayer, J. ; Drown, S. (Ed.)In this paper, we offer a novel framework for analyzing the Opportunities for Reasoning-and Proving (ORP) in mathematical tasks. By drawing upon some tenets of the commognitive framework, we conceptualize learning and teaching mathematics via reasoning and proving both as enacting reasoning processes (e.g., conjecturing, justifying) in the curricular-based mathematical discourse and as participation in the meta-discourse about proof, which is focused on the aspects of deductive reasoning. By cluster analysis performed on 106 tasks designed by prospective secondary teachers, we identify four types of tasks corresponding to four types of ORP: limited ORP, curricular-based reasoning ORP, logic related ORP, and fully integrated ORP. We discuss these ORP and the contribution of this framework in light of preparing beginning teachers to integrate reasoning and proving in secondary mathematics classrooms.more » « less
-
We use a curriculum design framework to analyze how prospective secondary teachers (PSTs) designed and implemented in local schools, lessons that integrate ongoing mathematical topics with one of the four proof themes addressed in the capstone course Mathematical Reasoning and Proving for Secondary Teachers. In this paper we focus on lessons developed around the conditional statements proof theme. We examine the ways in which PSTs integrated conditional statements in their lesson plans, how these lessons were implemented in classrooms, and the challenges PSTs encountered in these processes. Our results suggest that even when PSTs designed rich lesson plans, they often struggled to adjust their language to the students’ level and to maintain the cognitive demand of the tasks. We conclude by discussing possible supports for PSTs’ learning in these areas.more » « less
-
Christiansen, I (Ed.)
Despite the importance of reasoning and proving in mathematics and mathematics education, little is known about how future teachers become proficient in integrating reasoning and proving in their teaching practices. In this article, we characterize this aspect of prospective secondary mathematics teachers’ (PSTs’) professional learning by drawing upon the commognitive theory. We offer a triple-layer conceptualization of (student)
learning ,teaching , andlearning to teach mathematics via reasoning and proving by focusing on the discourses students participate in (learning), the opportunities for reasoning and proving afforded to them (teaching), and how PSTs design and enrich such opportunities (learning to teach). We explore PSTs’ pedagogical discourse anchored in the lesson plans they designed, enacted, and modified as part of their participation in a university-based course:Mathematical Reasoning and Proving for Secondary Teachers . We identified four types of discursive modifications: structural, mathematical, reasoning-based, and logic-based. We describe how the potential opportunities for reasoning and proving afforded to students by these lesson plans changed as a result of these modifications. Based on our triple-layered conceptualization we illustrate how the lesson modifications and the resulting alterations to student learning opportunities can be used to characterize PSTs’ professional learning. We discuss the affordances of theorizing teacher practices with the same theoretical lens (grounded in commognition) to inquire student learning and teacher learning, and how lesson plans, as a proxy of teaching practices, can be used as a methodological tool to better understand PSTs’ professional learning. -
For reasoning and proving to become a reality in mathematics classrooms, pre-service teachers (PSTs) must develop knowledge and skills for creating lessons that engage students in proof-related activities. Supporting PSTs in this process was among the goals of a capstone course: Mathematical Reasoning and Proving for Secondary Teachers. During the course, the PSTs designed and implemented in local schools four lessons that integrated within the regular secondary curriculum one of the four proof themes discussed in the course: quantification and the role of examples in proving, conditional statements, direct proof and argument evaluation, and indirect reasoning. In this paper we report on the analysis of 60 PSTs’ lesson plans in terms of opportunities for students to learn about the proof themes, pedagogical features of the lessons and cognitive demand of the proof-related tasks.more » « less
-
For reasoning and proof to become a reality in mathematics classrooms, it is important to prepare teachers who have knowledge and skills to integrate reasoning and proving in their teaching. Aiming to enhance prospective secondary teachers’ (PSTs) content and pedagogical knowledge related to proof, we designed and studied a capstone course Mathematical Reasoning and Proving for Secondary Teachers. This paper describes the structure of the course and illustrates how PSTs’ interacted with its different components. The PSTs first strengthened their content knowledge, then developed and taught in local schools a lesson incorporating proof components. Initial data analyses show gains in PSTs’ knowledge for teaching proof and dispositions towards proving, following their participation in the course.more » « less