Abstract Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1.
more »
« less
Ultrasmall Cu Nanoparticles Supported on Crystalline, Mesoporous ZnO for Selective CO 2 Hydrogenation
Abstract Converting CO2to value‐added chemicals,e. g., CH3OH, is highly desirable in terms of the carbon cycling while reducing CO2emission from fossil fuel combustion. Cu‐based nanocatalysts are among the most efficient for selective CO2‐to‐CH3OH transformation; this conversion, however, suffers from low reactivity especially in the thermodynamically favored low temperature range. We herein report ultrasmall copper (Cu) nanocatalysts supported on crystalline, mesoporous zinc oxide nanoplate (Cu@mZnO) with notable activity and selectivity of CO2‐to‐CH3OH in the low temperature range of 200–250 °C. Cu@mZnO nanoplates are prepared based on the crystal‐crystal transition of mixed Cu and Zn basic carbonates to mesoporous metal oxides and subsequent hydrogen reduction. Under the nanoconfinement of mesopores in crystalline ZnO frameworks, ultrasmall Cu nanoparticles with an average diameter of 2.5 nm are produced. Cu@mZnO catalysts have a peak CH3OH formation rate of 1.13 mol h−1per 1 kg under ambient pressure at 246 °C, about 25 °C lower as compared to that of the benchmark catalyst of Cu−Zn−Al oxides. Our new synthetic strategy sheds some valuable insights into the design of porous catalysts for the important conversion of CO2‐to‐CH3OH.
more »
« less
- Award ID(s):
- 1705566
- PAR ID:
- 10510533
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- ChemCatChem
- Volume:
- 16
- Issue:
- 3
- ISSN:
- 1867-3880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context.Recent JWST observations have measured the ice chemical composition towards two highly extinguished background stars, NIR38 and J110621, in the Chamaeleon I molecular cloud. The observed excess of extinction on the long-wavelength side of the H2O ice band at 3 μm has been attributed to a mixture of CH3OH with ammonia hydrates NH3·H2O), which suggests that CH3OH ice in this cloud could have formed in a water-rich environment with little CO depletion. Laboratory experiments and quantum chemical calculations suggest that CH3OH could form via the grain surface reactions CH3+ OH and/or C + H2O in water-rich ices. However, no dedicated chemical modelling has been carried out thus far to test their efficiency. In addition, it remains unexplored how the efficiencies of the proposed mechanisms depend on the astrochemical code employed. Aims.We modelled the ice chemistry in the Chamaeleon I cloud to establish the dominant formation processes of CH3OH, CO, CO2, and of the hydrides CH4and NH3(in addition to H2O). By using a set of state-of-the-art astrochemical codes (MAGICKAL, MONACO, Nautilus, UCLCHEM, and KMC simulations), we can test the effects of the different code architectures (rate equation vs. stochastic codes) and of the assumed ice chemistry (diffusive vs. non-diffusive). Methods.We consider a grid of models with different gas densities, dust temperatures, visual extinctions, and cloud-collapse length scales. In addition to the successive hydrogenation of CO, the codes’ chemical networks have been augmented to include the alternative processes for CH3OH ice formation in water-rich environments (i.e. the reactions CH3+ OH → CH3OH and C + H2O → H2CO). Results.Our models show that the JWST ice observations are better reproduced for gas densities ≥105cm−3and collapse timescales ≥105yr. CH3OH ice formation occurs predominantly (>99%) via CO hydrogenation. The contribution of reactions CH3+ OH and C + H2O is negligible. The CO2ice may form either via CO + OH or CO + O depending on the code. However, KMC simulations reveal that both mechanisms are efficient despite the low rate of the CO + O surface reaction. CH4is largely underproduced for all codes except for UCLCHEM, for which a higher amount of atomic C is available during the translucent cloud phase of the models. Large differences in the predicted abundances are found at very low dust temperatures (Tdust<12 K) between diffusive and non-diffusive chemistry codes. This is due to the fact that non-diffusive chemistry takes over diffusive chemistry at such low Tdust. This could explain the rather constant ice chemical composition found in Chamaeleon I and other dense cores despite the different visual extinctions probed.more » « less
-
Abstract Antiferromagnetic van der Waals‐typeM2P2X6compounds provide a versatile material platform for studying 2D magnetism and relevant phenomena. Establishing ferromagnetism in 2D materials is technologically valuable. Though magnetism is generally tunable via a chemical way, it is challenging to induce ferromagnetism with isovalent chalcogen and bimetallic substitutions inM2P2X6. Here, we report co‐substitution of Cu1+and Cr3+for Ni2+in Ni2P2S6, creating CuxNi2(1‐x)CrxP2S6medium‐entropy alloys spanning a full substitution range (x= 0 to 1). Such substitution strategy leads to a unique evolution in crystal structure and magnetic phases that are distinct from traditional isovalent bimetallic doping, with Cu and Cr co‐substitution enhancing ferromagnetic correlations and generating a weak ferromagnetic phase in intermediate compositions. This aliovalent substitution strategy offers a universal approach for tuning layered magnetism in antiferromagnetic systems, which along with the potential for light‐matter interaction and high‐temperature ferroelectricity, can enable multifunctional device applications.more » « less
-
Bis(triphenylsulfonium) tetrachloridozinc(II), (C18H15S)2[ZnCl4] (I), bis(triphenylsulfonium) tetrachloridocadmium(II), (C18H15S)2[CdCl4] (II), and bis(triphenylsulfonium) tetrachloridomercury(II) methanol monosolvate, (C18H15S)2[HgCl4]·CH3OH (III), each crystallize in the monoclinic space groupP21/n. In all three structures, there are two crystallographically independent triphenylsulfonium (TPS) cations per asymmetric unit, each adopting a distorted trigonal–pyramidal geometry about the S atom (S—C bond lengths in the 1.77–1.80 Å range and C—S—C angles of 100–107°). The [MCl4]2–anions (M= Zn2+, Cd2+, Hg2+) are tetrahedral; their M—Cl bond lengths systematically increase from Zn2+to Hg2+, consistent with the larger ionic radius of the heavier metal. Hirshfeld surface analyses show that H...H and H...C contacts dominate the TPS cation environments, whereas H...Cl and S...Minteractions anchor each [MCl4]2–anion to two surrounding TPS cations. Weak C—H...Cl hydrogen bonds, as well as inversion-centered π–π stacking, generate layers in (I) and (II) and dimeric [(TPS)2–HgCl4]2assemblies in (III).more » « less
An official website of the United States government

