skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Styles of Dolomitization Observed in the Great Bank of Guizhou, Nanpanjiang Basin, South China: Evidence for Multiple Dolomitization Processes
The Great Bank of Guizhou is a 2.5 km thick isolated carbonate platform deposited during the Triassic period. The rocks preserve evidence for multiple episodes of dolomitization, spread across a range of geologic time. Different styles of dolomitization and geochemical evidence support this interpretation. Early dolomitization includes both peritidal cycle cap dolomites and large regions of massively-bedded dolomite in the platform interior, along with isolated dolomitized and partially dolomitized clasts in slope breccias derived from the platform interior. Forms of later stage dolomite include a widespread overprint and modification of massively bedded platform interior dolomites during burial; zones of pervasively dolomitized slope sediments (10s of m thick), some of which are discordant at various scales (0.1 m to 100s of m); partial dolomitization along fractures, bedding planes, and stylolites; alternating stratiform laminae of limestone and dolostone (mm to cm scale) in slope sediments; and matrix-selective dolomitization in some slope breccias. Evidence for early dolomite includes isolated clasts of dolomite in Early Triassic slope breccias surrounded by lime mudstone, pervasive dolomite in platform interior sediments, Sr-isotopes and REE signatures consistent with Early Triassic seawater, and evidence for evaporites and solution collapse breccias in the platform interior. Textures and some geochemical indicators were modified during deep burial. Evidence for later stage dolomite (Late Triassic or later) includes zones of coarse massively dolomitized slope breccias surrounded by selectively dolomitized vertical and bedding plane fractures, stylolites, and alternating stratiform laminae of limestone and dolostone; fluid-inclusions containing brine (12-16 wt. %, NaCl equivalent) with homogenization temperatures of 100°C to 180°C, and some younger (post-burial) U-Pb age dates. Early evaporative-reflux dolomitization in the platform interior likely dominated the dolomite volumetrically before it was overprinted with burial signatures. Pervasively dolomitized slope breccias surrounded by selective dolomitized areas are interpreted to be the result of intrusion of late burial dolomitizing fluids into higher permeability units.  more » « less
Award ID(s):
2041315
PAR ID:
10510590
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
Geological Society of America Abstracts with Programs
Volume:
56
Issue:
3
Subject(s) / Keyword(s):
doi: 10.1130/abs/2024NC-398794
Format(s):
Medium: X
Location:
Springfield, MO
Sponsoring Org:
National Science Foundation
More Like this
  1. The Great Bank of Guizhou (GBG) is an isolated carbonate platform in the Nanpanjiang Basin. Contacts between limestone and dolomitized material cross-cut bedding and form an irregular lobe shaped body that extends from the interior and terminates toward the basin. Precursor carbonate facies include oolite grainstone and packstone (with some containing a microbial matrix), clotted microbialite boundstone, and massively dolomitized carbonate mudstone containing stromatolitic and fenestral fabrics indicating a range of high-energy subtidal shoal to intertidal tidal flat environments. The mudstones are present lower in the outcrop, followed by grainstones and packstones moving upwards. Samples range from partially to fully dolomitized, with partially dolomitized samples occurring near the dolomitization front. In partially dolomitized oolite, the ooids are selectively replaced by dolomite. The paragenetic sequence interpreted from petrography includes early marine intergranular cement, early fracturing associated with possible tepee formation, neomorphism of aragonitic mollusk shells and cortical laminae in ooids, anhedral replacement dolomite, dissolution forming dissolved ooids and vugs, late stage coarse euhedral dolomite cement within intergranular pores, vugs, and early fractures, twinned calcite fill of early fractures and vugs, late stage fractures filled with twinned calcite, and finally stylolites. Previous data from the western GBG using fluid inclusion and clumped isotope geothermometry indicates that dolomitization occurred with high temperatures at burial, within a spatially variable range of 90°C to 185°C. 87Sr/86Sr values of 0.707677 to 0.708601 are similar to the ratios found in Triassic seawater. δ18O (VPDB) values for dolomite range from -7.68‰ to -1.53‰, consistent with evaporative enrichment of seawater and high burial temperatures. The spatial distribution of the dolomite, strontium isotopes and oxygen isotopes are consistent with reflux dolomitization. In other areas, the platform interior contains evidence for hypersaline conditions and evaporite mineral precipitation also consistent with the reflux model. The geothermometry data indicates that early reflux dolomite was replaced at high temperatures during burial. 
    more » « less
  2. Triassic strata of the Yangtze Platform at Guanling contain a dolomitized interior, undolomitized margin, and partially dolomitized slope to basin margin. Dolomitized microbial laminate caps of peritidal cycles and massive dolomite with associated evaporite nodules and solution collapse breccias are consistent with penecontemporaneous tidal flat and evaporative dolomitization in the platform interior. The preferential dolomitization of the slope and basin margin (up to 7 km basinward of the margin), dolomitization along fractures, and selective dolomitization of the matrix in slope breccia that diminishes toward the margin are interpreted to have resulted from the incursion of basin-derived fluids during burial. Integrated analysis of fluid-inclusion microthermometry, oxygen, carbon, and strontium isotopes, trace element geochemistry, U-Pb age dates of carbonate phases, and burial history support the recrystallization of interior dolomite and slope to basin-margin dolomitization by brines at high temperatures during burial. The Yangtze Platform at Guanling provides an excellent example of widespread stratiform dolomitization resulting from the superposition of multiple mechanisms, including penecontemporaneous dolomitization by evaporative seawater brines, high-temperature dolomitization of the slope and basin margin by basinal brines, and high-temperature recrystallization of dolomite by brines during burial. This study provides an example that suggests that widespread stratiform dolomite may result from superposed Earth surface and high-temperature burial dolomitization processes and provides a valuable analog for other carbonate platforms in which the margin remains undolomitized while the interior and basin margin are dolomitized. Similar mechanisms likely contributed to the widespread dolomitization of platforms across the Nanpanjiang and Sichuan basins. 
    more » « less
  3. The Yangtze Platform borders the Nanpanjiang Basin on its north and west. During the Early Triassic the platform evolved from low-relief ramp with oolitic margins to a steepening platform with a relatively flat-topped geometry with margin shoals and evaporitic interior facies. At the Zhenfeng margin the precursor depositional facies include: oolitic grainstone to packstone, skeletal peloidal packstone, clotted microbialites and fenestral laminites. The Anshun strata range from undolomitized to partially dolomitized oolite and microbial facies to partially and completely dolomitized facies such as fenestral laminites. Dolomitization changes upward through the section with fenestral laminate facies being more pervasively dolomitized than the oolitic and skeletal packstone facies. The diagenetic evolution (paragenetic sequence includes: neomorphic alteration of aragonite, marine cementation, replacement dolomite, euherdral dolomites, saddle dolomites, calcite veins, stylolites, and late-stage fractures with calcite and oxide fill. Previous data from the Yangtze Platform include dolomite showing δ¹⁸O values ranging from -7.7‰ to 0.75‰ (VPDB) and δ ¹³C values ranging from 0.77‰ to 4.0‰ (VPDB). Vein calcite values range from δ ¹⁸O -18.4‰ to -5.2‰ and δ ¹³C -6.1 to 3.4‰. ⁸⁷Sr/⁸⁶Sr values from dolomite ranges from 0.707677 to 0.708601 with the exception of elevated ⁸⁷Sr/⁸⁶Sr in three samples. Homogenization temperatures (Th) and freezing point depressions (Tmice) from primary fluid inclusion assemblages from dolomite crystals indicate entrapment of saline brines (9.5 to 16 wt. % NaCl) over temperatures of 80-185°C. The preferential dolomitization of mud-rich platform interior facies and preservation of oolitic limestone facies at the platform margin points to interior derived dolomitizing fluids consistent with evaporative reflux. The range in δ ¹⁸O is consistent with enrichment by evaporative concentration of seawater, but also includes negative values consistent with high temperature fluids. ⁸⁷Sr/⁸⁶Sr values in dolomite are consistent with modified seawater including a radiogenic contribution of hydrothermal fluids. The geothermometric data, oxygen isotope values and radiogenic Sr contribution indicates that early dolomites were recrystallized at high temperatures by burial fluids. 
    more » « less
  4. Abstract Subaqueous mass‐transport processes are one of the mechanisms for transport of sediment into the deep sea. Internal structures and depositional processes of carbonate mass‐transport deposits are relatively poorly understood relative to siliciclastic facies due to their comparative paucity in the rock record. A variety of carbonate mass‐transport deposits, including slumps, debrites and deep‐channel‐confined density flow deposits, occur in Middle–Upper Ordovician slope deposits in western Inner Mongolia (Wuhai), China. These provide a rare opportunity to illustrate the emplacement history of carbonate mass‐transport deposits at the outcrop scale. The slumps and debrites host remarkable folds, chaotic beds and imbricated beds that reflect differences in both rheology and position on the slope. Individual slump sheets show gradations between undulating laminae, inclined and recumbent folds, highly deformed folds, and chaotic textures upslope from the toe region. Debrites are commonly interbedded with slump deposits, whereas imbricated beds are present in the middle and lower parts of the toes of slump sheets near the terminal wall. In the study area, thin‐bedded limestone with slump deposits of the Kelimoli Formation are overlain by fine‐grained, siliciclastic‐dominated, slope deposits of the Wulalike Formation. A thick breccia of the Wulalike Formation was deposited in a main feeder channel in south‐east Wuhai, but to the west‐north‐west the breccia was deposited in distributary channels possibly represented as a unique lower‐slope pattern of gullies. At the latter locality, the breccia was deposited solely within the channels on a steep west‐north‐west dipping slope under density‐driven flows. The mass‐transport deposits documented herein records passive to foreland basin tectonic transitions, and associated platform foundering and steepening of the slope. A slope facies model was constructed to demonstrate the spatial and temporal variations of mass‐transport deposits during basin evolution, and as such it provides a template for the interpretation of the deposits of ancient slopes that underwent passive to active tectonic transitions. 
    more » « less
  5. The Whitehorse Group and Quartermaster Formation are extensive red-bed terrestrial sequences representing the final episode of sedimentation in the Palo Duro Basin in north-central Texas, U.S.A. Regionally, these strata record the culmination of a long-term regression sequence beginning in the middle to late Permian. The Whitehorse Group includes beds of abundant laminated to massive red quartz siltstone to fine sandstone and rare dolomite, laminated to massive gypsum, and claystones, as well as diagenetic gypsum. The Quartermaster Formation exhibits a change from nearly equal amounts of thin planar and lenticular fine sandstone and laminated to massive mudstone in its lower half to overlying strata with coarser-grained, cross-bedded sandstones indicative of meandering channels up to 7 m deep and rare overbank mudstones. Paleosols are absent in the Upper Whitehorse Group and only poorly developed in the Quartermaster Formation. Volcanic ash-fall deposits (tuffs) present in uppermost Whitehorse Group and lower Quartermaster Formation strata permit correlation among five stratigraphic sections distributed over ∼150 km and provide geochronologic age information for these rocks. Both the Whitehorse Group and Quartermaster Formation have traditionally been assigned to the late Permian Ochoan (Changhsingian) stage, and workers assumed that the Permian-Triassic boundary is characterized by a regionally significant unconformity. Chemostratigraphic or biostratigraphic evidence for this age assignment, however, have been lacking to date. Single zircon U-Pb CA-TIMS analyses from at least two distinct volcanic ash fall layers in the lower Quartermaster Formation, which were identified and collected from five different localities across the Palo Duro Basin, yield interpreted depositional ages ranging from 252.19 ± 0.30 to 251.74 ± 0.28 Ma. Single zircon U-Pb CA-TIMS analyses of detrital zircons from sandstones located only a few meters beneath the top of the Quartermaster Formation yield a range of dates from Mesoproterozoic (1418 Ma) to Middle Triassic (244.5 Ma; Anisian), the latter of which is interpreted as a maximum depositional age, which is no older than Anisian, thus indicating the Permian-Triassic boundary to lie somewhere within the lower Quartermaster Formation/upper Whitehorse Group succession. Stable carbon isotope data from 180 samples of early-burial dolomicrite cements preserve a chemostratigraphic signal that is similar among sections, with a large ∼−8‰ negative isotope excursion ∼20 m beneath the Whitehorse Group-Quartermaster Formation boundary. This large negative carbon isotope excursion is interpreted to be the same excursion associated with the end-Permian extinction and this is in concert with the new high precision radioisotopic age data presented and the fact that the excursion lies within a normal polarity stratigraphic magnetozone. Dolomite cement δ 13 C values remain less negative (between about −5 and −8 permil) into the lower part of the Quartermaster Formation before becoming more positive toward the top of the section. This long interval of negative δ 13 C values in the Quartermaster Formation is interpreted to represent the earliest Triassic (Induan) inception of biotic and ecosystem “recovery.” Oxygen isotope values of dolomicrite cements show a progressive trend toward more positive values through the boundary interval, suggesting substantially warmer conditions around the end-Permian extinction event and a trend toward cooler conditions after the earliest Triassic. Our observations on these strata show that the paleoenvironment and paleoclimate across the Permian-Triassic boundary in western, sub-equatorial Pangea was characterized by depositional systems that were not conducive to plant preservation. 
    more » « less