skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The information premium on a finite probability space
On a finite probability space, we consider the problem of fair pricing of contingent claims and its sensitivity to a distortion of information, where we follow the weak information modeling approach. We show that, in complete models, or more generally, for replicable contingent claims, the weak information does not affect the fair price. For incomplete models, this is not the case for non-replicable claims, where we obtain explicit formulas for the information premium and correction to an optimal trading strategy. We illustrate our results by an example, where we demon- strate that under weak information, the fair price can increase, stay the same, or decrease. Finally, we perform the stability analysis for the information premium and the correction of the optimal trading strategy to perturbations of the contingent claim payoff, stock price dynamics, and the reference probability measure.  more » « less
Award ID(s):
1848339
PAR ID:
10510655
Author(s) / Creator(s):
; ;
Publisher / Repository:
Project Euclid
Date Published:
Journal Name:
Missouri Journal of Mathematical Sciences
Volume:
36
Issue:
1
ISSN:
0899-6180
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. On a finite probability space, we consider the problem of indifference pricing of contingent claims, where the preferences of an economic agent are modeled by an Inada utility stochastic field — the interior of its effective domain being (a,∞) — for some a∈R∪{−∞}. This allows for including utilities on both R and R+. We consider arbitrary contingent claims and show that, for replicable ones, the indifference price equals the initial value of the replicating strategy and thus depends neither on the agent’s initial wealth, for which the indifference pricing problem is well-posed, nor the utility stochastic field. This, in particular, shows the consistency of the indifference and arbitrage-free pricing methodologies for complete models. For nonreplicable claims, we show that the indifference price is equal to the expectation of the discounted payoff under the dual-optimal measure, which is equivalent to the reference probability measure. In particular, we demonstrate that the indifference price is unique for every choice of a smooth Inada utility stochastic field and initial wealth in (a,∞). Our proofs rely on the change of numéraire technique and a reformulation of the indifference pricing problem. The advantages of the settings of this paper and the approach allow for bypassing the technicalities and issues related to choosing the notion of admissibility and for including a wide range of utilities, including stochastic ones. We augment the results with examples. 
    more » « less
  2. We study learning-based trading strategies in markets where prices can be manipulated through spoofing: the practice of submitting spurious orders to mislead traders who use market information. To reduce the vulnerability of learning traders to such manipulation, we propose two variations based on the standard heuristic belief learning (HBL) trading strategy, which learns transaction probabilities from market activities observed in an order book. The first variation selectively ignores orders at certain price levels, particularly where spoof orders are likely to be placed. The second considers the full order book, but adjusts its limit order price to correct for bias in decisions based on the learned heuristic beliefs. We employ agent-based simulation to evaluate these variations on two criteria: effectiveness in non-manipulated markets and robustness against manipulation. Background traders can adopt the (non-learning) zero intelligence strategies or HBL, in its basic form or the two variations. We conduct empirical game-theoretic analysis upon simulated payoffs to derive approximate strategic equilibria, and compare equilibrium outcomes across a variety of trading environments. Results show that agents can strategically make use of the option to block orders to improve robustness against spoofing, while retaining a comparable competitiveness in non-manipulated markets. Our second HBL variation exhibits a general improvement over standard HBL, in markets with and without manipulation. Further explorations suggest that traders can enjoy both improved profitability and robustness by combining the two proposed variations. 
    more » « less
  3. We study learning-based trading strategies in markets where prices can be manipulated through spoofing: the practice of submitting spurious orders to mislead traders who use market information. To reduce the vulnerability of learning traders to such manipulation, we propose two variations based on the standard heuristic belief learning (HBL) trading strategy, which learns transaction probabilities from market activities observed in an order book. The first variation selectively ignores orders at certain price levels, particularly where spoof orders are likely to be placed. The second considers the full order book, but adjusts its limit order price to correct for bias in decisions based on the learned heuristic beliefs. We employ agent-based simulation to evaluate these variations on two criteria: effectiveness in non-manipulated markets and robustness against manipulation. Background traders can adopt (non-learning) zero intelligence strategies or HBL, in its basic form or the two variations. We conduct empirical game-theoretic analysis upon simulated payoffs to derive approximate strategic equilibria, and compare equilibrium outcomes across a variety of trading environments. Results show that agents can strategically make use of the option to block orders to improve robustness against spoofing, while retaining a comparable competitiveness in non-manipulated markets. Our second HBL variation exhibits a general improvement over standard HBL, in markets with and without manipulation. Further explorations suggest that traders can enjoy both improved profitability and robustness by combining the two proposed variations. 
    more » « less
  4. Abstract We develop a new market‐making model, from the ground up, which is tailored toward high‐frequency trading under a limit order book (LOB), based on the well‐known classification of order types in market microstructure. Our flexible framework allows arbitrary order volume, price jump, and bid‐ask spread distributions as well as the use of market orders. It also honors the consistency of price movements upon arrivals of different order types. For example, it is apparent that prices should never go down on buy market orders. In addition, it respects the price‐time priority of LOB. In contrast to the approach of regular control on diffusion as in the classical Avellaneda and Stoikov (Quantitative Finance, 8, 217, 2008) market‐making framework, we exploit the techniques of optimal switching and impulse control on marked point processes, which have proven to be very effective in modeling the order book features. The Hamilton‐Jacobi‐Bellman quasi‐variational inequality (HJBQVI) associated with the control problem can be solved numerically via finite‐difference method. We illustrate our optimal trading strategy with a full numerical analysis, calibrated to the order book statistics of a popular exchanged‐traded fund (ETF). Our simulation shows that the profit of market‐making can be severely overstated under LOBs with inconsistent price movements. 
    more » « less
  5. We study the problem of optimal information sharing in the context of a service system. In particular, we consider an unobservable single server queue offering a service at a fixed price to a Poisson arrival of delay-sensitive customers. The service provider can observe the queue, and may share information about the state of the queue with each arriving customer. The customers are Bayesian and strategic, and incorporate any information provided by the service provider into their prior beliefs about the queue length before making the decision whether to join the queue or leave without obtaining service. We pose the following question: which signaling mechanism and what price should the service provider select to maximize her revenue? We formulate this problem as an instance of Bayesian persuasion in dynamic settings. The underlying dynamics make the problem more difficult because, in contrast to static settings, the signaling mechanism adopted by the service provider affects the customers' prior beliefs about the queue (given by the steady state distribution of the queue length in equilibrium). The core contribution of this work is in characterizing the structure of the optimal signaling mechanism. We summarize our main results as follows. (1) Structural characterization: Using a revelation-principle style argument, we find that it suffices to consider signaling mechanisms where the service provider sends a binary signal of "join" or "leave", and under which the equilibrium strategy of a customer is to follow the service provider's recommended action. (2) Optimality of threshold policies: For a given fixed price for service, we use the structural characterization to show that the optimal signaling mechanism can be obtained as a solution to a linear program with a countable number of variables and constraints. Under some mild technical conditions on the waiting costs, we establish that there exists an optimal signaling mechanism with a threshold structure, where service provider sends the "join" signal if the queue length is below a threshold, and "leave" otherwise. (In addition, at the threshold, the service provider randomizes.) For the special case of linear waiting costs, we derive an analytical expression for the optimal threshold i terms of the two branches of the Lambert-W function. (3) Revenue comparison: Finally, we show that with the optimal choice of the fixed price and using the corresponding optimal signaling mechanism, the service provider can achieve the same revenue as with the optimal state-dependent pricing mechanism in a fully-observable queue. This implies that in settings where state-dependent pricing is not feasible, the service provider can effectively use optimal signaling (with the optimal fixed price) to achieve the same revenue. 
    more » « less