skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Mental Models Training App: Enhancing verbal reasoning through a cognitive training mobile application
Reasoning is a complex form of human cognition whose nature has long been debated. While a number of neurocognitive mechanisms for deductive reasoning have been offered, one of the most prominent accounts is Mental Model Theory (MMT). According to MMT, humans are able to manipulate and represent information for reasoning and problem solving by leveraging the brain’s evolved visuospatial resources. Thus, when solving deductive reasoning problems, reasoners build “mental models” of the essential pieces of information conveyed in the premises, with their relations to each other represented spatially—even when the information contained within a reasoning problem is not intrinsically spatial. Crucially, taking a spatially-based approach, such as building mental models, supports higher accuracy on deductive reasoning problems. However, no study has empirically tested whether explicitly training this mental modeling ability leads to improved deductive reasoning performance.  more » « less
Award ID(s):
1661065 1920682
PAR ID:
10510692
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Psychology
Volume:
14
ISSN:
1664-1078
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Relational reasoning is a complex form of human cognition involving the evaluation of relations between mental representations of information. Prior studies have modified stimulus properties of relational reasoning problems and examined differences in difficulty between different problem types. While subsets of these stimulus properties have been addressed in separate studies, there has not been a comprehensive study, to our knowledge, which investigates all of these properties in the same set of stimuli. This investigative gap has resulted in different findings across studies which vary in task design, making it challenging to determine what stimulus properties make relational reasoning—and the putative formation of mental models underlying reasoning—difficult. In this article, we present the Multidimensional Relational Reasoning Task (MRRT), a task which systematically varied an array of stimulus properties within a single set of relational reasoning problems. Using a mixed-effects framework, we demonstrate that reasoning problems containing a greater number of the premises as well as multidimensional relations led to greater task difficulty. The MRRT has been made publicly available for use in future research, along with normative data regarding the relative difficulty of each problem. 
    more » « less
  2. Abstract Mental models provide a cognitive framework allowing for spatially organizing information while reasoning about the world. However, transitive reasoning studies often rely on perception of stimuli that contain visible spatial features, allowing the possibility that associated neural representations are specific to inherently spatial content. Here, we test the hypothesis that neural representations of mental models generated through transitive reasoning rely on a frontoparietal network irrespective of the spatial nature of the stimulus content. Content within three models ranges from expressly visuospatial to abstract. All mental models participants generated were based on inferred relationships never directly observed. Here, using multivariate representational similarity analysis, we show that patterns representative of mental models were revealed in both superior parietal lobule and anterior prefrontal cortex and converged across stimulus types. These results support the conclusion that, independent of content, transitive reasoning using mental models relies on neural mechanisms associated with spatial cognition. 
    more » « less
  3. Practice plays a critical role in learning engineering dynamics. Typical practice in a dynamics course involves solving textbook problems. These problems can impose great cognitive load on underprepared students because they have not mastered constituent knowledge and skills required for solving whole problems. For these students, learning can be improved by being engaged in deliberate practice. Deliberate practice refers to a type of practice aimed at improving specific constituent knowledge or skills. Compared to solving whole problems requiring the simultaneous use of multiple constituent skills, deliberate practice is usually focused on one component skill at a time, which results in less cognitive load and more specificity. Contemporary theories of expertise development have highlighted the influence of deliberate practice (DP) on achieving exceptional performance in sports, music, and various professional fields. Concurrently, there is an emerging method for improving learning efficiency of novices by combining deliberate practice with cognitive load theory (CLT), a cognitive-architecture-based theory for instructional design. Mechanics is a foundation for most branches of engineering. It serves to develop problem-solving skills and consolidate understanding of other subjects, such as applied mathematics and physics. Mechanics has been a challenging subject. Students need to understand governing principles to gain conceptual knowledge and acquire procedural knowledge to apply these principles to solve problems. Due to the difficulty in developing conceptual and procedural knowledge, mechanics courses are among those that receive high DFW rates (percentage of students receiving a grade of D or F or Withdrawing from a course), and students are more likely to leave engineering after taking mechanics courses. Deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance. The goal of the present study is to develop deliberate practice techniques to improve learning effectiveness and to reduce cognitive load. Our pilot study results revealed that the student mental effort scores were negatively correlated with their knowledge test scores with r = -.29 (p < .05) after using deliberate practice strategies. This supports the claim that deliberate practice can improve student learning while reducing cognitive load. In addition, the higher the students’ knowledge test scores, the lower their mental effort was when taking the tests. In other words, the students who used deliberate practice strategies had better learning results with less cognitive load. To design deliberate practice, we often need to analyze students’ persistent problems caused by faulty mental models, also referred to as an intuitive mental model, and misconceptions. In this study, we continue to conduct an in-depth diagnostic process to identify students’ common mistakes and associated intuitive mental models. We then use the results to develop deliberate practice problems aimed at changing students’ cognitive strategies and mental models. 
    more » « less
  4. Practice plays a critical role in learning engineering dynamics. Typical practice in a dynamics course involves solving textbook problems. These problems can impose great cognitive load on underprepared students because they have not mastered constituent knowledge and skills required for solving whole problems. For these students, learning can be improved by being engaged in deliberate practice. Deliberate practice refers to a type of practice aimed at improving specific constituent knowledge or skills. Compared to solving whole problems requiring the simultaneous use of multiple constituent skills, deliberate practice is usually focused on one component skill at a time, which results in less cognitive load and more specificity. Contemporary theories of expertise development have highlighted the influence of deliberate practice (DP) on achieving exceptional performance in sports, music, and various professional fields. Concurrently, there is an emerging method for improving learning efficiency of novices by combining deliberate practice with cognitive load theory (CLT), a cognitive-architecture-based theory for instructional design. Mechanics is a foundation for most branches of engineering. It serves to develop problem-solving skills and consolidate understanding of other subjects, such as applied mathematics and physics. Mechanics has been a challenging subject. Students need to understand governing principles to gain conceptual knowledge and acquire procedural knowledge to apply these principles to solve problems. Due to the difficulty in developing conceptual and procedural knowledge, mechanics courses are among those that receive high DFW rates (percentage of students receiving a grade of D or F or Withdrawing from a course), and students are more likely to leave engineering after taking mechanics courses. Deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance. The goal of the present study is to develop deliberate practice techniques to improve learning effectiveness and to reduce cognitive load. Our pilot study results revealed that the student mental effort scores were negatively correlated with their knowledge test scores with r = -.29 (p < .05) after using deliberate practice strategies. This supports the claim that deliberate practice can improve student learning while reducing cognitive load. In addition, the higher the students’ knowledge test scores, the lower their mental effort was when taking the tests. In other words, the students who used deliberate practice strategies had better learning results with less cognitive load. To design deliberate practice, we often need to analyze students’ persistent problems caused by faulty mental models, also referred to as an intuitive mental model, and misconceptions. In this study, we continue to conduct an in-depth diagnostic process to identify students’ common mistakes and associated intuitive mental models. We then use the results to develop deliberate practice problems aimed at changing students’ cognitive strategies and mental models. 
    more » « less
  5. Lamberg, Teruni; Moss, Diana L (Ed.)
    We investigate teacher beliefs about discourses for equation solving and the challenges these beliefs might pose for the implementation of instructional practices that promote deductive reasoning in algebra. To uncover these beliefs, we recorded three video explanations of solutions to the same linear equation with distinct discursive characteristics and analyzed seven secondary mathematics teachers’ small-group critical discussions of these explanations. Three prevalent themes surfaced in our thematic analysis. Teacher beliefs about discourse for equation solving specified different roles and potential benefits of deductive explanations, estimated students’ capacity to understand deductive explanations, and hypothesized differences between teachers' and students' potential to understand deductive reasoning. We discuss implications of these beliefs for opportunities to engage all learners in conceptual thinking about equations. 
    more » « less