The interaction between catalyst surfaces and adsorbed oxygen intermediates is critical to catalytic performance for electrochemical water oxidation to oxygen. However, the relationship between adsorption energetics and electrocatalytic activity is primarily assessed for pristine catalyst materials, which leaves much unknown about the dynamics of these properties in relationship to catalyst performance during long-term operation. In this work, we experimentally assess OH and O adsorption on Ca2IrO4 nanoparticles and monitor their evolution during extensive chronoamperometry tests at highly oxidizing potentials in a range of low pH electrolytes. In situ x-ray absorption spectroscopy reveals changes for surface adsorbate energetics and local iridium structures with applied potentials. Increasingly unfavorable adsorption of OH and formation of O intermediates after long-term operation is correlated with severe metal dissolution, distorted [IrO6] octahedral linkages, and a decreased average Ir valence. This work establishes connections between surface adsorption energetics, Ir structure, OER kinetics, and material stability outcomes.
more »
« less
Degradation Mechanism of Calcium Iridium Oxide for Oxygen Evolution Reaction in Acid
The development of active and acid-stable iridium-based catalysts is crucial to meet the requirements of proton exchange membrane technologies for the sustainable production of hydrogen via water electrolysis. However, long-term stability remains a critical challenge. In this work, we focus on a Ca2IrO4 catalyst to develop a holistic picture of catalyst electronic and geometric structure evolution under various applied potentials by probing electrochemically active surface area, metal dissolution, Ir valence, and surface morphology. We observe an initial activity increase in parallel with increasing capacitance and minor iridium dissolution. Extensive chronoamperometry tests at oxidizing potentials lead to significant activity loss that occurs simultaneously with a dramatic drop in capacitance and a change in impedance. Using a combination of electrochemical and spectroscopic tools, we provide fundamental insights to these material degradation processes to enable future catalyst design with balanced activity and long-term stability.
more »
« less
- Award ID(s):
- 2144365
- PAR ID:
- 10510702
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- Energy & Fuels
- Volume:
- 37
- Issue:
- 17
- ISSN:
- 0887-0624
- Page Range / eLocation ID:
- 13554 to 13561
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Acidic oxygen evolution reaction (OER) electrocatalysts that have high activity, extended durability, and lower costs are needed to further the development and wide-scale adoption of proton-exchange membrane electrolyzers. In this work, we report hydrous cobalt–iridium oxide two-dimensional (2D) nanoframes exhibit higher oxygen evolution activity and similar stability compared with commercial IrO 2 ; however, the bimetallic Co–Ir catalyst undergoes a significantly different degradation process compared with the monometallic IrO 2 catalyst. The bimetallic Co–Ir 2D nanoframes consist of interconnected Co–Ir alloy domains within an unsupported, carbon-free, porous nanostructure that allows three-dimensional molecular access to the catalytically active surface sites. After electrochemical conditioning within the OER potential range, the predominately bimetallic alloy surface transforms to an oxide/hydroxide surface. Oxygen evolution activities determined using a rotating disk electrode configuration show that the hydrous Co–Ir oxide nanoframes provide 17 times higher OER mass activity and 18 times higher specific activity compared to commercial IrO 2 . The higher OER activities of the hydrous Co–Ir nanoframes are attributed to the presence of highly active surface iridium hydroxide groups. The accelerated durability testing of IrO 2 resulted in lowering of the specific activity and partial dissolution of Ir. In contrast, the durability testing of hydrous Co–Ir oxide nanoframes resulted in the combination of a higher Ir dissolution rate, an increase in the relative contribution of surface iridium hydroxide groups and an increase in specific activity. The understanding of the differences in degradation processes between bimetallic and monometallic catalysts furthers our ability to design high activity and stability acidic OER electrocatalysts.more » « less
-
Activity, cost, and durability are the trinity of catalysis research for the electrochemical oxygen reduction reaction (ORR). While studies towards increasing activity and reducing cost of ORR catalysts have been carried out extensively, much effort is needed in durability investigation of highly active ORR catalysts. In this work, we examined the stability of a trimetallic PtPdCu catalyst that has demonstrated high activity and incredible durability during ORR using density functional theory (DFT) based computations. Specifically, we studied the processes of dissolution/deposition and diffusion between the surface and inner layer of Cu species of Pt 20 Pd 20 Cu 60 catalysts at electrode potentials up to 1.2 V to understand their role towards stabilizing Pt 20 Pd 20 Cu 60 catalysts. The results show there is a dynamic Cu surface composition range that is dictated by the interplay of the four processes, dissolution, deposition, diffusion from the surface to inner layer, and diffusion from the inner layer to the surface of Cu species, in the stability and observed oscillation of lattice constants of Cu-rich PtPdCu nanoalloys.more » « less
-
Water electrolysis using proton exchange membrane technology offers an ideal process for green hydrogen production, but widespread deployment is inhibited by insufficient catalyst activity, stability and affordability. Iridium-based oxides provide the best overall performance for acidic water oxidation, the limiting reaction for this process, but further improvements are impeded by poor understanding of the restructured active catalyst surface that forms under reaction conditions. Here we present a combination of X-ray and electron scattering data that reveals direct evidence for three paracrystalline structural motifs at the restructured surfaces of highly active catalysts (including rutile IrO2 and perovskite SrIrO3) that have previously been described as amorphous. These insights enable the design of a paracrystalline IrOx catalyst that is independent of the bulk crystalline support and maintains higher activity, longer stability and more effective use of iridium to promote the production of green hydrogen.more » « less
-
Acidic oxygen evolution reaction (OER) electrocatalysts that provide high activity, lower costs, and long-term stability are needed for the wide-scale adoption of proton-exchange membrane (PEM) water electrolyzers for generating hydrogen through electrochemical water splitting. We report the effects of chromium substitution and temperature treatments on the structure, OER activity, and electrochemical stability of ruthenium oxide (RuO2) aerogel OER electrocatalysts. RuO2 and Cr-substituted RuO2 aerogels (Ru0.6Cr0.4O2) were synthesized using sol–gel chemistry and then thermally treated at different temperatures. Introducing chromium into the synthesis increased the surface area (7–11 times higher) and pore volume (5–6 times higher) relative to RuO2 aerogels. X-ray diffraction analysis is consistent with s that Cr was substituted into the rutile RuO2 structure. X-ray photoelectron spectroscopy showed that trivalent Cr substitution altered the surface electronic structure and ratio of surface hydroxides. The specific capacitance values of Cr-substituted RuO2 aerogels were consistent with charge storage within a hydrous surface. Cr-substituted RuO2 aerogels exhibited 26 times the OER mass activity and 3.5 times the OER specific activity of RuO2 aerogels. Electrochemical stability tests show that Cr-substituted RuO2 aerogels exhibit similar stability to commercial RuO2. Understanding how metal substituents can be used to alter OER activity and stability furthers our ability to obtain highly active, durable, and lower-cost OER electrocatalysts for PEM electrolyzers.more » « less
An official website of the United States government

